-
1
-
-
0000461055
-
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations
-
Ball J 1977 Remarks on blow-up and nonexistence theorems for nonlinear evolution equations Quart. J. Math. 28 473-86
-
(1977)
Quart. J. Math.
, vol.28
, pp. 473-486
-
-
Ball, J.1
-
2
-
-
84990610650
-
A rescaling algorithm for the numerical calculation of blowing-up solutions
-
Berger M and Kohn R 1988 A rescaling algorithm for the numerical calculation of blowing-up solutions Commun. Pure Appl. Math. 41 841-63
-
(1988)
Commun. Pure Appl. Math.
, vol.41
, pp. 841-863
-
-
Berger, M.1
Kohn, R.2
-
4
-
-
0000877190
-
Universality in blow-up for nonlinear heat equations
-
Bricmont J and Kupiainen A 1994 Universality in blow-up for nonlinear heat equations Nonlinearity 7 539-75
-
(1994)
Nonlinearity
, vol.7
, pp. 539-575
-
-
Bricmont, J.1
Kupiainen, A.2
-
8
-
-
84990616610
-
Asymptotically self-similar blowup of semilinear heat equations
-
Giga Y and Kohn R 1985 Asymptotically self-similar blowup of semilinear heat equations Commun. Pure Appl. Math. 38 297-319
-
(1985)
Commun. Pure Appl. Math.
, vol.38
, pp. 297-319
-
-
Giga, Y.1
Kohn, R.2
-
9
-
-
0000332576
-
Characterizing blowup using similarity variables
-
Giga Y and Kohn R 1987 Characterizing blowup using similarity variables Indiana Univ. Math. J. 36 1-40
-
(1987)
Indiana Univ. Math. J.
, vol.36
, pp. 1-40
-
-
Giga, Y.1
Kohn, R.2
-
10
-
-
84990575181
-
Nondegeneracy of blow-up for semilinear heat equations
-
Giga Y and Kohn R 1989 Nondegeneracy of blow-up for semilinear heat equations Commun. Pure Appl. Math. 42 845-84
-
(1989)
Commun. Pure Appl. Math.
, vol.42
, pp. 845-884
-
-
Giga, Y.1
Kohn, R.2
-
12
-
-
0040298247
-
On the quenching behaviour of the solution of a semilinear parabolic equation
-
Guo J 1991 On the quenching behaviour of the solution of a semilinear parabolic equation J. Math. Anal. Appl. 117 803-9
-
(1991)
J. Math. Anal. Appl.
, vol.117
, pp. 803-809
-
-
Guo, J.1
-
13
-
-
0010876410
-
On the quenching rate estimate
-
Guo J 1991 On the quenching rate estimate Quart. Appl. Math. 49 747-52
-
(1991)
Quart. Appl. Math.
, vol.49
, pp. 747-752
-
-
Guo, J.1
-
15
-
-
0000066418
-
Blow-up profiles in one-dimensional semilinear parabolic problems
-
Herrero M A and Velazquez J J L 1992 Blow-up profiles in one-dimensional semilinear parabolic problems Com. PDE 17 205-19
-
(1992)
Com. PDE
, vol.17
, pp. 205-219
-
-
Herrero, M.A.1
Velazquez, J.J.L.2
-
16
-
-
84948486085
-
Remarks on the large time behaviour of a nonlinear diffusion equation
-
Kavian O 1987 Remarks on the large time behaviour of a nonlinear diffusion equation Ann. Inst. H. Poincaré Analyse Nonlinéaire 4 423-52
-
(1987)
Ann. Inst. H. Poincaré Analyse Nonlinéaire
, vol.4
, pp. 423-452
-
-
Kavian, O.1
-
17
-
-
0040298250
-
Straight forward asymptotics and numerci for blowing-up solutions to semilinear heat equations
-
Keller J B and Lowengrub J S 1992 Straight forward asymptotics and numerci for blowing-up solutions to semilinear heat equations Proc. NATO Sing. Conf.
-
(1992)
Proc. NATO Sing. Conf.
-
-
Keller, J.B.1
Lowengrub, J.S.2
-
19
-
-
0000576069
-
Quenching, nonquenching, and beyond quenching for solutions of some parabolic equations
-
Levine H A 1990 Quenching, nonquenching, and beyond quenching for solutions of some parabolic equations Annali Mat. Pure Appl. 155 243-60
-
(1990)
Annali Mat. Pure Appl.
, vol.155
, pp. 243-260
-
-
Levine, H.A.1
-
21
-
-
84990556280
-
Solution of a nonlinear heat equation with arbitrary given blow-up points
-
Merle F 1992 Solution of a nonlinear heat equation with arbitrary given blow-up points Commun. Pure Appl. Math. 45 263-300
-
(1992)
Commun. Pure Appl. Math.
, vol.45
, pp. 263-300
-
-
Merle, F.1
-
24
-
-
84968503478
-
Classification of singularities for blowing up solutions in higher dimensions
-
Velazquez J J L 1993 Classification of singularities for blowing up solutions in higher dimensions Trans. Am. Math. Soc. 338 441-64
-
(1993)
Trans. Am. Math. Soc.
, vol.338
, pp. 441-464
-
-
Velazquez, J.J.L.1
-
25
-
-
0040892346
-
Blow-up results for vector-valued nonlinear heat equations with no gradient structure
-
to appear
-
Zaag H Blow-up results for vector-valued nonlinear heat equations with no gradient structure Ann. Inst. H. Poincaré Anal. Nonlinéaire to appear
-
Ann. Inst. H. Poincaré Anal. Nonlinéaire
-
-
Zaag, H.1
|