메뉴 건너뛰기




Volumn 82, Issue 2, 2011, Pages 157-189

Detecting communities and their evolutions in dynamic social networks - A Bayesian approach

Author keywords

Bayesian inference; Community; Community evolution; Dynamic stochastic block model; Gibbs sampling; Social network

Indexed keywords

BAYESIAN INFERENCE; COMMUNITY; COMMUNITY EVOLUTION; GIBBS SAMPLING; SOCIAL NETWORKS;

EID: 79851513504     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-010-5214-7     Document Type: Article
Times cited : (284)

References (45)
  • 1
    • 52649163923 scopus 로고    scopus 로고
    • Dynamic non-parametric mixture models and the recurrent Chinese restaurant process: With applications to evolutionary clustering
    • SIAM Philadelphia
    • Ahmed, A., & Xing, E. P. (2008). Dynamic non-parametric mixture models and the recurrent Chinese restaurant process: with applications to evolutionary clustering. In SDM (pp. 219-230). Philadelphia: SIAM.
    • (2008) SDM , pp. 219-230
    • Ahmed, A.1    Xing, E.P.2
  • 9
    • 0003882879 scopus 로고    scopus 로고
    • American Mathematical Society Providence 0867.05046
    • Chung, F. R. K. (1997). Spectral graph theory. Providence: American Mathematical Society.
    • (1997) Spectral Graph Theory
    • Chung, F.R.K.1
  • 20
    • 79851513672 scopus 로고    scopus 로고
    • A particle-and-density based evolutionary clustering method for dynamic networks
    • M. S. Kim J. Han 2009 A particle-and-density based evolutionary clustering method for dynamic networks Proceedings VLDB Endowment 2 1 622 633
    • (2009) Proceedings VLDB Endowment , vol.2 , Issue.1 , pp. 622-633
    • Kim, M.S.1    Han, J.2
  • 26
    • 29244457315 scopus 로고    scopus 로고
    • Discovering evolutionary theme patterns from text: An exploration of temporal text mining
    • Mei, Q., & Zhai, C. (2005). Discovering evolutionary theme patterns from text: an exploration of temporal text mining. In Proceedings of the 11th ACM SIGKDD conference.
    • (2005) Proceedings of the 11th ACM SIGKDD Conference
    • Mei, Q.1    Zhai, C.2
  • 28
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E.
    • (2004) Physical Review e
    • Newman, M.E.J.1    Girvan, M.2
  • 29
    • 34247223815 scopus 로고    scopus 로고
    • Quantifying social group evolution
    • Palla, G., Barabasi, A. L., & Vicsek, T. (2007). Quantifying social group evolution. Nature, 446.
    • (2007) Nature , vol.446
    • Palla, G.1    Barabasi, A.L.2    Vicsek, T.3
  • 30
    • 36849035459 scopus 로고    scopus 로고
    • Dynamic social network analysis using latent space models
    • Sarkar, P., & Moore, A. W. (2005). Dynamic social network analysis using latent space models. SIGKDD Exploration Newsletter, 7(2).
    • (2005) SIGKDD Exploration Newsletter , vol.7 , Issue.2
    • Sarkar, P.1    Moore, A.W.2
  • 33
    • 0003314308 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of exponential random graph models
    • Snijders, T. A. B. (2002). Markov chain Monte Carlo estimation of exponential random graph models. Journal of Social Structure, 3.
    • (2002) Journal of Social Structure , vol.3
    • Snijders, T.A.B.1
  • 36
    • 65449147147 scopus 로고    scopus 로고
    • Community evolution in dynamic multi-mode networks
    • New York: ACM. doi: 10.1145/1401890.1401972
    • L. Tang H. Liu J. Zhang Z. Nazeri 2008 Community evolution in dynamic multi-mode networks KDD '08: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining ACM New York 677 685 10.1145/1401890.1401972 10.1145/1401890.1401972 Tang, L., Liu, H., Zhang, J., & Nazeri, Z. (2008). Community evolution in dynamic multi-mode networks. In KDD '08: Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 677-685). New York: ACM. doi: 10.1145/1401890.1401972.
    • (2008) KDD '08: Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 677-685
    • Tang, L.1    Liu, H.2    Zhang, J.3    Nazeri, Z.4
  • 40
    • 0030491229 scopus 로고    scopus 로고
    • Logit models and logistic regressions for social networks, I: An introduction to Markov graphs and p*
    • Wasserman, S., & Pattison, P. (1996). Logit models and logistic regressions for social networks, I: an introduction to Markov graphs and p*. Psychometrika, 60.
    • (1996) Psychometrika , vol.60
    • Wasserman, S.1    Pattison, P.2
  • 41
    • 84880106426 scopus 로고    scopus 로고
    • A spectral clustering approach to finding communities in graph
    • White, S., & Smyth, P. (2005). A spectral clustering approach to finding communities in graph. In SDM.
    • (2005) SDM
    • White, S.1    Smyth, P.2
  • 42
    • 8644285576 scopus 로고    scopus 로고
    • Document clustering by concept factorization
    • Xu, W., & Gong, Y. (2004). Document clustering by concept factorization. In SIGIR (pp. 202-209).
    • (2004) SIGIR , pp. 202-209
    • Xu, W.1    Gong, Y.2
  • 44
    • 84864052219 scopus 로고    scopus 로고
    • Soft clustering on graphs
    • Yu, K., Yu, S., & Tresp, V. (2005). Soft clustering on graphs. In NIPS.
    • (2005) NIPS
    • Yu, K.1    Yu, S.2    Tresp, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.