메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 973-984

Detecting communities in social networks using max-min modularity

Author keywords

[No Author keywords available]

Indexed keywords

COMMON PROPERTY; COMMUNITY DETECTION; COMMUNITY MINING; COMMUNITY STRUCTURES; DATA SETS; DENSITY MEASURES; DOMAIN EXPERTS; HIERARCHICAL CLUSTERING ALGORITHMS; IN-NETWORK; MAX-MIN; OR-NETWORKS; REAL-WORLD NETWORKS; ROBUSTNESS AGAINST NOISE; SOCIAL NETWORKS; STRUCTURAL MEASURES;

EID: 72749116929     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (61)

References (46)
  • 3
    • 2542567719 scopus 로고    scopus 로고
    • Semi-supervised clustering by seeding
    • S. Basu, A. Banerjee, and R. J. Mooney. Semi-supervised clustering by seeding. In ICML, pages 27-34, 2002.
    • (2002) ICML , pp. 27-34
    • Basu, S.1    Banerjee, A.2    Mooney, R.J.3
  • 5
    • 0344981444 scopus 로고    scopus 로고
    • Clustering with qualitative information
    • M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In FOCS, page 524, 2003.
    • (2003) FOCS , pp. 524
    • Charikar, M.1    Guruswami, V.2    Wirth, A.3
  • 6
    • 27244456660 scopus 로고    scopus 로고
    • Finding local community structure in networks
    • A. Clauset. Finding local community structure in networks. Physical Review E, 72:026132, 2005.
    • (2005) Physical Review E , vol.72 , pp. 026132
    • Clauset, A.1
  • 7
    • 41349117788 scopus 로고    scopus 로고
    • Finding community structure in very lage networks
    • A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very lage networks. Phys. Rev. E, 70:066111, 2004.
    • (2004) Phys. Rev. E , vol.70 , pp. 066111
    • Clauset, A.1    Newman, M.E.J.2    Moore, C.3
  • 9
    • 77952375075 scopus 로고    scopus 로고
    • Information-theoretic co-clustering
    • I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD, pages 89-98, 2003.
    • (2003) KDD , pp. 89-98
    • Dhillon, I.S.1    Mallela, S.2    Modha, D.S.3
  • 10
    • 78149301227 scopus 로고    scopus 로고
    • A min-max cut algorithm for graph partitioning and data clustering
    • C. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partitioning and data clustering. In ICDM, pages 107-114, 2001.
    • (2001) ICDM , pp. 107-114
    • Ding, C.H.Q.1    He, X.2    Zha, H.3    Gu, M.4    Simon, H.D.5
  • 11
    • 27244441304 scopus 로고    scopus 로고
    • Community detection in complex networks using extremal optimization
    • J. Duch and A. Arenas. Community detection in complex networks using extremal optimization. Phys. Rev. E, 72:027104, 2005.
    • (2005) Phys. Rev. E , vol.72 , pp. 027104
    • Duch, J.1    Arenas, A.2
  • 12
    • 0034592749 scopus 로고    scopus 로고
    • E cient identification of web communities
    • G. W. Flake, S. Lawrence, and C. L. Giles. E cient identification of web communities. In KDD, pages 150-160, 2000.
    • (2000) KDD , pp. 150-160
    • Flake, G.W.1    Lawrence, S.2    Giles, C.L.3
  • 15
    • 28444438828 scopus 로고    scopus 로고
    • Clustering aggregation
    • A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. In ICDE, pages 341-352, 2005.
    • (2005) ICDE , pp. 341-352
    • Gionis, A.1    Mannila, H.2    Tsaparas, P.3
  • 16
    • 33244494259 scopus 로고    scopus 로고
    • Correlation clustering with a fixed number of clusters
    • I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters. In SODA, pages 1167-1176, 2006.
    • (2006) SODA , pp. 1167-1176
    • Giotis, I.1    Guruswami, V.2
  • 17
    • 0000005152 scopus 로고    scopus 로고
    • Community structure in social and biological networks
    • M. Girvan and M. E. J. Newman. Community structure in social and biological networks. In PNAS USA, 99:8271-8276. 2002.
    • (2002) PNAS USA , vol.99 , pp. 8271-8276
    • Girvan, M.1    Newman, M.E.J.2
  • 18
    • 38049120277 scopus 로고    scopus 로고
    • An algorithm to find overlapping community structure in networks
    • S. Gregory. An algorithm to find overlapping community structure in networks. In PKDD, pages 91-102, 2007.
    • (2007) PKDD , pp. 91-102
    • Gregory, S.1
  • 19
    • 14644396645 scopus 로고    scopus 로고
    • Functional cartography of complex metabolic networks
    • R. Guimera and L. A. N. Amaral. Functional cartography of complex metabolic networks. Nature, 433:895-900, 2005.
    • (2005) Nature , vol.433 , pp. 895-900
    • Guimera, R.1    Amaral, L.A.N.2
  • 20
    • 72749127797 scopus 로고    scopus 로고
    • IMDB
    • IMDB. http://www.imdb.com/.
  • 21
    • 72749115930 scopus 로고    scopus 로고
    • D. Jensen, statistical challenges to inductive inference in linked data, 1999.
    • D. Jensen, statistical challenges to inductive inference in linked data, 1999.
  • 22
  • 23
    • 18744398132 scopus 로고    scopus 로고
    • The link prediction problem for social networks
    • D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. In CIKM, pages 556-559, 2003.
    • (2003) CIKM , pp. 556-559
    • Liben-Nowell, D.1    Kleinberg, J.2
  • 24
    • 33749541707 scopus 로고    scopus 로고
    • Unsupervised learning on k-partite graphs
    • B. Long, X. Wu, Z. M. Zhang, and P. S. Yu. Unsupervised learning on k-partite graphs. In KDD, pages 317-326, 2006.
    • (2006) KDD , pp. 317-326
    • Long, B.1    Wu, X.2    Zhang, Z.M.3    Yu, P.S.4
  • 25
    • 36849020504 scopus 로고    scopus 로고
    • A probabilistic framework for relational clustering
    • B. Long, Z. M. Zhang, and P. S. Yu. A probabilistic framework for relational clustering. In KDD, pages 470-479, 2007.
    • (2007) KDD , pp. 470-479
    • Long, B.1    Zhang, Z.M.2    Yu, P.S.3
  • 26
    • 38349126835 scopus 로고    scopus 로고
    • Fuzzy communities and the concept of bridgeness in complex networks
    • T. Nepusz, A. Petroczi, L. Negyessy, and F. Bazso. Fuzzy communities and the concept of bridgeness in complex networks. Physical Review E, 77, 2008.
    • (2008) Physical Review E , vol.77
    • Nepusz, T.1    Petroczi, A.2    Negyessy, L.3    Bazso, F.4
  • 27
    • 42749100809 scopus 로고    scopus 로고
    • Fast algorithm for detecting community structure in networks
    • M. E. J. Newman. Fast algorithm for detecting community structure in networks. Physical Review E, 69, 2004.
    • (2004) Physical Review E , vol.69
    • Newman, M.E.J.1
  • 28
    • 33749468596 scopus 로고    scopus 로고
    • Finding community structure in networks using the eigenvectors of matrices
    • M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74, 2006.
    • (2006) Physical Review E , vol.74
    • Newman, M.E.J.1
  • 29
    • 33745012299 scopus 로고    scopus 로고
    • Modularity and community structure in networks
    • M. E. J. Newman. Modularity and community structure in networks. PNAS USA, 103, 2006.
    • (2006) PNAS USA , vol.103
    • Newman, M.E.J.1
  • 30
    • 37649028224 scopus 로고    scopus 로고
    • Finding and evaluating community structure in networks
    • M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical Review E, 69, 2004.
    • (2004) Physical Review E , vol.69
    • Newman, M.E.J.1    Girvan, M.2
  • 31
    • 72749120597 scopus 로고    scopus 로고
    • Pajek. http://vlado.fmf.uni-li.si/pub/networks/paiek/.
    • Pajek
  • 32
    • 20444504323 scopus 로고    scopus 로고
    • Uncovering the overlapping community structure of complex networks in nature and society
    • G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435:814, 2005.
    • (2005) Nature , vol.435 , pp. 814
    • Palla, G.1    Derenyi, I.2    Farkas, I.3    Vicsek, T.4
  • 33
    • 38349102446 scopus 로고    scopus 로고
    • An e cient spectral algorithm for network community discovery and its applications to biological and social networks
    • J. Ruan and W. Zhang. An e cient spectral algorithm for network community discovery and its applications to biological and social networks. In ICDM, pages 643-648 2007.
    • (2007) ICDM , pp. 643-648
    • Ruan, J.1    Zhang, W.2
  • 34
    • 38349191347 scopus 로고    scopus 로고
    • Identifying network communities with a high resolution
    • J. Ruan and W. Zhang. Identifying network communities with a high resolution. Physical Review E, 77:016104, 2008.
    • (2008) Physical Review E , vol.77 , pp. 016104
    • Ruan, J.1    Zhang, W.2
  • 35
    • 49749141991 scopus 로고    scopus 로고
    • Exploration of link structure and community-based node roles in network
    • J. Scripps, P.-N. Tan, and A.-H. Esfahanian. Exploration of link structure and community-based node roles in network. In ICDM, 2007.
    • (2007) ICDM
    • Scripps, J.1    Tan, P.-N.2    Esfahanian, A.-H.3
  • 37
    • 1842435182 scopus 로고    scopus 로고
    • Correlation clustering: Maximizing agreements via semidefinite programming
    • C. Swamy. Correlation clustering: maximizing agreements via semidefinite programming. In SODA, pages 526-527, 2004.
    • (2004) SODA , pp. 526-527
    • Swamy, C.1
  • 38
    • 36849058149 scopus 로고    scopus 로고
    • A framework for community identification in dynamic social networks
    • C. Tantipathananandh, T. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD, pages 717-726, 2007.
    • (2007) KDD , pp. 717-726
    • Tantipathananandh, C.1    Berger-Wolf, T.2    Kempe, D.3
  • 39
    • 0001898293 scopus 로고    scopus 로고
    • Clustering with instance-level constraints
    • K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In ICML, pages 1103-1110, 2000.
    • (2000) ICML , pp. 1103-1110
    • Wagstaff, K.1    Cardie, C.2
  • 40
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schrodl. Constrained k-means clustering with background knowledge. In ICML, pages 577-584, 2001.
    • (2001) ICML , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schrodl, S.4
  • 41
    • 84880106426 scopus 로고    scopus 로고
    • A spectral clustering approach to finding communities in graphs
    • S. White and P. Smyth. A spectral clustering approach to finding communities in graphs. In SIAM, 2005.
    • (2005) SIAM
    • White, S.1    Smyth, P.2
  • 42
    • 36949010345 scopus 로고    scopus 로고
    • Scan: A structural clustering algorithm for networks
    • X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a structural clustering algorithm for networks. In KDD, pages 824-833, 2007.
    • (2007) KDD , pp. 824-833
    • Xu, X.1    Yuruk, N.2    Feng, Z.3    Schweiger, T.A.J.4
  • 43
    • 13844297591 scopus 로고    scopus 로고
    • K. Y. Yip and M. K. Ng. Harp: A practical projected clustering algorithm. IEEE TKDE, 16(11):1387-1397, 2004.
    • K. Y. Yip and M. K. Ng. Harp: A practical projected clustering algorithm. IEEE TKDE, 16(11):1387-1397, 2004.
  • 44
    • 42449110882 scopus 로고
    • An information flow model for conflict and fission in small groups
    • W. W. Zachary. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33:452-473, 1977.
    • (1977) Journal of Anthropological Research , vol.33 , pp. 452-473
    • Zachary, W.W.1
  • 46
    • 33751166180 scopus 로고    scopus 로고
    • Identification of overlapping community structure in complex networks using fuzzy c-means clustering
    • S. Zhang, R.-S. Wang, and X.-S. Zhang. Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A, 374:483-490, 2007.
    • (2007) Physica A , vol.374 , pp. 483-490
    • Zhang, S.1    Wang, R.-S.2    Zhang, X.-S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.