메뉴 건너뛰기




Volumn 61, Issue 4, 2011, Pages 1032-1047

Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance

Author keywords

At resonance; Coincidence degree; Coupled system; Fractional differential equations

Indexed keywords

AT RESONANCE; COINCIDENCE DEGREE; COINCIDENCE DEGREE THEORY; COUPLED SYSTEMS; EXISTENCE RESULTS; FRACTIONAL DIFFERENTIAL EQUATIONS; THREE POINT BOUNDARY VALUE PROBLEMS;

EID: 79651475091     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2010.12.053     Document Type: Article
Times cited : (73)

References (29)
  • 1
    • 73249139676 scopus 로고    scopus 로고
    • On the concept of solution for fractional differential equations with uncertainty
    • R.P. Agarwal, V. Lakshmikantham, and J.J. Nieto On the concept of solution for fractional differential equations with uncertainty Nonlinear Anal. TMA 72 2010 2859 2862
    • (2010) Nonlinear Anal. TMA , vol.72 , pp. 2859-2862
    • Agarwal, R.P.1    Lakshmikantham, V.2    Nieto, J.J.3
  • 2
    • 70349131961 scopus 로고    scopus 로고
    • Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions
    • B. Ahmad, and J.J. Nieto Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions Comput. Math. Appl. 58 2009 1838 1843
    • (2009) Comput. Math. Appl. , vol.58 , pp. 1838-1843
    • Ahmad, B.1    Nieto, J.J.2
  • 3
    • 0038405057 scopus 로고    scopus 로고
    • Existence of positive solutions of nonlinear fractional differential equations
    • A. Babakhani, and V.D. Gejji Existence of positive solutions of nonlinear fractional differential equations J. Math. Anal. Appl. 278 2003 434 442
    • (2003) J. Math. Anal. Appl. , vol.278 , pp. 434-442
    • Babakhani, A.1    Gejji, V.D.2
  • 4
    • 71649083074 scopus 로고    scopus 로고
    • On positive solutions of a nonlocal fractional boundary value problem
    • Z. Bai On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. TMA 72 2010 916 924
    • (2010) Nonlinear Anal. TMA , vol.72 , pp. 916-924
    • Bai, Z.1
  • 5
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • DOI 10.1016/j.jmaa.2005.02.052, PII S0022247X05001733
    • Z. Bai, and H. Lü Positive solutions of boundary value problems of nonlinear fractional differential equation J. Math. Anal. Appl. 311 2005 495 505 (Pubitemid 41350217)
    • (2005) Journal of Mathematical Analysis and Applications , vol.311 , Issue.2 , pp. 495-505
    • Bai, Z.1    Lu, H.2
  • 6
    • 77957376783 scopus 로고    scopus 로고
    • The existence of solutions for a fractional multi-point boundary value problem
    • Z. Bai, and Y. Zhang The existence of solutions for a fractional multi-point boundary value problem Comput. Math. Appl. 60 2010 2364 2372
    • (2010) Comput. Math. Appl. , vol.60 , pp. 2364-2372
    • Bai, Z.1    Zhang, Y.2
  • 7
    • 76649111047 scopus 로고    scopus 로고
    • On the global existence of solutions to a class of fractional differential equations
    • D. Baleanu, and O.G. Mustafa On the global existence of solutions to a class of fractional differential equations Comput. Math. Appl. 59 2010 1835 1841
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1835-1841
    • Baleanu, D.1    Mustafa, O.G.2
  • 8
    • 73949122290 scopus 로고    scopus 로고
    • On the asymptotic integration of a class of sublinear fractional differential equations
    • 101063/13271111
    • D. Baleanu, and O.G. Mustafa On the asymptotic integration of a class of sublinear fractional differential equations J. Math. Phys. 50 2009 123520 10.1063/1.3271111 (14 pages)
    • (2009) J. Math. Phys. , vol.50 , pp. 123520
    • Baleanu, D.1    Mustafa, O.G.2
  • 9
    • 78649549013 scopus 로고    scopus 로고
    • On the solution set for a class of sequential fractional differential equations
    • 101088/1751-8113/43/38/385209
    • D. Baleanu, O.G. Mustafa, and R.P. Agarwal On the solution set for a class of sequential fractional differential equations J. Phys. A: Math. Theor. 43 2010 385209 10.1088/1751-8113/43/38/385209
    • (2010) J. Phys. A: Math. Theor. , vol.43 , pp. 385209
    • Baleanu, D.1    Mustafa, O.G.2    Agarwal, R.P.3
  • 10
    • 34247323827 scopus 로고    scopus 로고
    • Fractional differential equations as alternative models to nonlinear differential equations
    • DOI 10.1016/j.amc.2006.08.105, PII S0096300306011398
    • B. Bonilla, M. Rivero, L. Rodriguez-Germa, and J.J. Trujillo Fractional differential equations as alternative models to nonlinear differential equations Appl. Math. Comput. 187 2007 79 88 (Pubitemid 46635706)
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.1 SPEC. ISS. , pp. 79-88
    • Bonilla, B.1    Rivero, M.2    Rodriguez-Germa, L.3    Trujillo, J.J.4
  • 11
    • 58049138945 scopus 로고    scopus 로고
    • Some new existence results for fractional differential inclusions with boundary conditions
    • Y.K. Chang, and J.J. Nieto Some new existence results for fractional differential inclusions with boundary conditions Math. Comput. Modelling 49 2009 605 609
    • (2009) Math. Comput. Modelling , vol.49 , pp. 605-609
    • Chang, Y.K.1    Nieto, J.J.2
  • 12
    • 43049157795 scopus 로고    scopus 로고
    • Numerical solutions of coupled Burgers equations with time and space fractional derivatives
    • Y. Chen, and H. An Numerical solutions of coupled Burgers equations with time and space fractional derivatives Appl. Math. Comput. 200 2008 87 95
    • (2008) Appl. Math. Comput. , vol.200 , pp. 87-95
    • Chen, Y.1    An, H.2
  • 13
    • 0032115069 scopus 로고    scopus 로고
    • Nonlinear functional differential equations of arbitrary orders
    • A.M.A. El-Sayed Nonlinear functional differential equations of arbitrary orders Nonlinear Anal. TMA 33 1998 181 186
    • (1998) Nonlinear Anal. TMA , vol.33 , pp. 181-186
    • El-Sayed, A.M.A.1
  • 14
    • 47849129193 scopus 로고    scopus 로고
    • Mathematical modeling of time fractional reactiondiffusion systems
    • V. Gafiychuk, B. Datsko, and V. Meleshko Mathematical modeling of time fractional reactiondiffusion systems J. Comput. Appl. Math. 220 2008 215 225
    • (2008) J. Comput. Appl. Math. , vol.220 , pp. 215-225
    • Gafiychuk, V.1    Datsko, B.2    Meleshko, V.3
  • 15
    • 10844262723 scopus 로고    scopus 로고
    • Positive solutions of a system of non-autonomous fractional differential equations
    • V.D. Gejji Positive solutions of a system of non-autonomous fractional differential equations J. Math. Anal. Appl. 302 2005 56 64
    • (2005) J. Math. Anal. Appl. , vol.302 , pp. 56-64
    • Gejji, V.D.1
  • 19
    • 53949111458 scopus 로고    scopus 로고
    • Basic theory of fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala Basic theory of fractional differential equations Nonlinear Anal. TMA 69 2008 2677 2682
    • (2008) Nonlinear Anal. TMA , vol.69 , pp. 2677-2682
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 20
    • 67349233078 scopus 로고    scopus 로고
    • Nagumo-type uniqueness result for fractional differential equations
    • V. Lakshmikantham, and S. Leela Nagumo-type uniqueness result for fractional differential equations Nonlinear Anal. TMA 71 2009 2886 2889
    • (2009) Nonlinear Anal. TMA , vol.71 , pp. 2886-2889
    • Lakshmikantham, V.1    Leela, S.2
  • 21
    • 67349095627 scopus 로고    scopus 로고
    • A KrasnoselskiiKrein-type uniqueness result for fractional differential equations
    • V. Lakshmikantham, and S. Leela A KrasnoselskiiKrein-type uniqueness result for fractional differential equations Nonlinear Anal. TMA 71 2009 3421 3424
    • (2009) Nonlinear Anal. TMA , vol.71 , pp. 3421-3424
    • Lakshmikantham, V.1    Leela, S.2
  • 22
    • 37349014877 scopus 로고    scopus 로고
    • Theory of fractional differential inequalities and applications
    • V. Lakshmikantham, and A.S. Vatsala Theory of fractional differential inequalities and applications Commun. Appl. Anal. 11 2007 395 402
    • (2007) Commun. Appl. Anal. , vol.11 , pp. 395-402
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 23
    • 45049084850 scopus 로고    scopus 로고
    • General uniqueness and monotone iterative technique for fractional differential equations
    • V. Lakshmikantham, and A.S. Vatsala General uniqueness and monotone iterative technique for fractional differential equations Appl. Math. Lett. 21 2008 828 834
    • (2008) Appl. Math. Lett. , vol.21 , pp. 828-834
    • Lakshmikantham, V.1    Vatsala, A.S.2
  • 24
    • 27744589296 scopus 로고    scopus 로고
    • Finite time stability analysis of P Dα fractional control of robotic time-delay systems
    • M.P. Lazarevi Finite time stability analysis of P Dα fractional control of robotic time-delay systems Mech. Res. Comm. 33 2006 269 279
    • (2006) Mech. Res. Comm. , vol.33 , pp. 269-279
    • Lazarevi, M.P.1
  • 25
    • 25144469866 scopus 로고
    • Fractional differential equations
    • K.S. Miller Fractional differential equations J. Fract. Calc. 3 1993 49 57
    • (1993) J. Fract. Calc. , vol.3 , pp. 49-57
    • Miller, K.S.1
  • 26
    • 55649098198 scopus 로고    scopus 로고
    • Boundary value problem for a coupled system of nonlinear fractional differential equations
    • X. Su Boundary value problem for a coupled system of nonlinear fractional differential equations Appl. Math. Lett. 22 2009 64 69
    • (2009) Appl. Math. Lett. , vol.22 , pp. 64-69
    • Su, X.1
  • 27
    • 77957332047 scopus 로고    scopus 로고
    • Existence of solutions for nonlinear fractional three-point boundary value problems at resonance
    • 10.1007/s12190-010-0411-x
    • Y. Zhang, and Z. Bai Existence of solutions for nonlinear fractional three-point boundary value problems at resonance J. Appl. Math. Comput. 2010 10.1007/s12190-010-0411-x
    • (2010) J. Appl. Math. Comput.
    • Zhang, Y.1    Bai, Z.2
  • 28
    • 0037443323 scopus 로고    scopus 로고
    • Solvability of multi-point boundary value problem at resonance II
    • B. Liu Solvability of multi-point boundary value problem at resonance II Appl. Math. Comput. 136 2003 353 377
    • (2003) Appl. Math. Comput. , vol.136 , pp. 353-377
    • Liu, B.1
  • 29
    • 0002113063 scopus 로고
    • Topological degree and boundary value problems for nonlinear differential equations
    • Topological Methods for Ordinary Differential Equatons
    • J. Mawhin Topological degree and boundary value problems for nonlinear differential equations P.M. Fitzpatrick, M. Martelli, J. Mawhin, R. Nussbaum, Topological Methods for Ordinary Differential Equatons Lecture Notes in Mathematics vol. 1537 1991 Springer Berlin 74 142
    • (1991) Lecture Notes in Mathematics , vol.1537 , pp. 74-142
    • Mawhin, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.