메뉴 건너뛰기




Volumn 39, Issue 1, 2011, Pages 48-81

Regression on manifolds: Estimation of the exterior derivative

Author keywords

Collinearity; Manifold; Model selection; Nonparametric regression; Regularization

Indexed keywords


EID: 79551608900     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-AOS823     Document Type: Article
Times cited : (65)

References (61)
  • 1
    • 79551595393 scopus 로고
    • Generalized inverse matrices and their applications
    • MR0646552
    • AITCHISON, P. W. (1982). Generalized inverse matrices and their applications. Internat. J. Math. Ed. Sci. Tech. 13 99-109. MR0646552
    • (1982) Internat. J. Math. Ed. Sci. Tech. , vol.13 , pp. 99-109
    • Aitchison, P.W.1
  • 2
    • 70350356261 scopus 로고    scopus 로고
    • A comparison of nine PLS1 algorithms
    • ANDERSSON, M. (2009). A comparison of nine PLS1 algorithms. J. Chemometrics 23 518-529.
    • (2009) J. Chemometrics , vol.23 , pp. 518-529
    • Andersson, M.1
  • 3
    • 70350350870 scopus 로고    scopus 로고
    • Statistics for sparse, high-dimensional, and nonparametric system identification. In
    • IEEE Press, Piscataway, NJ
    • ASWANI, A., BICKEL, P. and TOMLIN, C. (2009). Statistics for sparse, high-dimensional, and nonparametric system identification. In IEEE International Conference on Robotics and Automation 2133-2138. IEEE Press, Piscataway, NJ.
    • (2009) IEEE International Conference on Robotics and Automation , pp. 2133-2138
    • Aswani, A.1    Bickel, P.2    Tomlin, C.3
  • 5
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • MR2274444
    • BELKIN, M., NIYOGI, P. and SINDHWANI, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7 2399-2434. MR2274444
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 6
    • 0039616744 scopus 로고    scopus 로고
    • Perturbation bounds for matrix eigenvalues
    • SIAM, Philadelphia, PA. MR2325304
    • BHATIA, R. (2007). Perturbation Bounds for Matrix Eigenvalues. Classics in Applied Mathematics 53. SIAM, Philadelphia, PA. MR2325304
    • (2007) Classics in Applied Mathematics , vol.53
    • Bhatia, R.1
  • 7
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • MR2485008
    • BICKEL, P. and LEVINA, E. (2008). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604. MR2485008
    • (2008) Ann. Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.1    Levina, E.2
  • 9
    • 0000485156 scopus 로고
    • Some asymptotic theory for the bootstrap
    • MR0630103
    • BICKEL, P. and FREEDMAN, D. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9 1196-1217. MR0630103
    • (1981) Ann. Statist. , vol.9 , pp. 1196-1217
    • Bickel, P.1    Freedman, D.2
  • 10
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2313-2351. MR2382644
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 11
    • 0001749398 scopus 로고    scopus 로고
    • Nonparametric regression in the presence of measurement error
    • MR1723777
    • CARROLL, R., MACA, J. and RUPPERT, D. (1999). Nonparametric regression in the presence of measurement error. Biometrika 86 541-554. MR1723777
    • (1999) Biometrika , vol.86 , pp. 541-554
    • Carroll, R.1    Maca, J.2    Ruppert, D.3
  • 12
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • MR2085582
    • COSTA, J. and HERO, A. (2004). Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. Signal Process. 52 2210-2221. MR2085582
    • (2004) IEEE Trans. Signal Process. , vol.52 , pp. 2210-2221
    • Costa, J.1    Hero, A.2
  • 13
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • MR1946581
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360. MR1946581
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 14
    • 21344496605 scopus 로고
    • Nonparametric regression with errors in variables
    • MR1245773
    • FAN, J. and TRUONG, Y. (1993). Nonparametric regression with errors in variables. Ann. Statist. 21 1900-1925. MR1245773
    • (1993) Ann. Statist. , vol.21 , pp. 1900-1925
    • Fan, J.1    Truong, Y.2
  • 16
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • FRANK, I. E. and FRIEDMAN, J. H. (1993). A statistical view of some chemometrics regression tools. Technometrics 35 109-135.
    • (1993) Technometrics , vol.35 , pp. 109-135
    • Frank, I.E.1    Friedman, J.H.2
  • 18
    • 14044262265 scopus 로고    scopus 로고
    • Ridge estimator in singular design with application to age-period-cohort analysis of disease rates
    • FU, W. (2000). Ridge estimator in singular design with application to age-period-cohort analysis of disease rates. Comm. Statist. Theory Methods 29 263-278.
    • (2000) Comm. Statist. Theory Methods , vol.29 , pp. 263-278
    • Fu, W.1
  • 19
    • 39449135159 scopus 로고    scopus 로고
    • A smooth cohort model in age-period-cohort analysis with applications to homicide arrest rates and lung cancer mortality rates
    • MR2422770
    • FU, W. (2008). A smooth cohort model in age-period-cohort analysis with applications to homicide arrest rates and lung cancer mortality rates. Sociol. Methods Res. 36 327-361. MR2422770
    • (2008) Sociol. Methods Res. , vol.36 , pp. 327-361
    • Fu, W.1
  • 20
    • 21844523306 scopus 로고
    • On the asymptotics of constrained m-estimation
    • MR1329179
    • GEYER, C. (1994). On the asymptotics of constrained m-estimation. Ann. Statist. 22 1993-2010. MR1329179
    • (1994) Ann. Statist. , vol.22 , pp. 1993-2010
    • Geyer, C.1
  • 21
    • 50949095498 scopus 로고    scopus 로고
    • Manifold learning: The price of normalization
    • MR2438829
    • GOLDBERG, Y., ZAKAI, A., KUSHNIR, D. and RITOV, Y. (2008).Manifold learning: The price of normalization. J.Mach. Learn. Res. 9 1909-1939. MR2438829
    • (2008) J.Mach. Learn. Res. , vol.9 , pp. 1909-1939
    • Goldberg, Y.1    Zakai, A.2    Kushnir, D.3    Ritov, Y.4
  • 22
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed Johns Hopkins Univ. Press, Baltimore, MD. MR1417720
    • GOLUB, G. and VAN LOAN, C. (1996). Matrix Computations, 3rd ed. Johns Hopkins Univ. Press, Baltimore, MD. MR1417720
    • (1996) Matrix Computations
    • Golub, G.1    Van Loan, C.2
  • 23
    • 31844456759 scopus 로고    scopus 로고
    • Intrinsic dimensionality estimation of submanifolds in Rd
    • ACM, New York
    • HEIN, M. and AUDIBERT, J.-Y. (2005). Intrinsic dimensionality estimation of submanifolds in Rd. In International Conference on Machine Learning 289-296. ACM, New York.
    • (2005) International Conference on Machine Learning , pp. 289-296
    • Hein, M.1    Audibert, J.-Y.2
  • 24
    • 84946280337 scopus 로고
    • On the structure of partial least squares regression
    • MR0955342
    • HELLAND, I. (1988). On the structure of partial least squares regression. Comm. Statist. Simulation Comput. 17 581-607. MR0955342
    • (1988) Comm. Statist. Simulation Comput. , vol.17 , pp. 581-607
    • Helland, I.1
  • 25
    • 0017280570 scopus 로고
    • The analysis and selection of variables in linear regression
    • MR0398008
    • HOCKING, R. (1976). The analysis and selection of variables in linear regression. Biometrics 32 431-453. MR0398008
    • (1976) Biometrics , vol.32 , pp. 431-453
    • Hocking, R.1
  • 26
    • 0001795946 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • HOERL, A. E. and KENNARD, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 8 27-51.
    • (1970) Technometrics , vol.8 , pp. 27-51
    • Hoerl, A.E.1    Kennard, R.W.2
  • 28
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • JOHNSTONE, I.M. and LU, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104 682-693.
    • (2009) J. Amer. Statist. Assoc. , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 29
    • 62349123505 scopus 로고    scopus 로고
    • Operator norm consistent estimation of large-dimensional sparse covariance matrices
    • MR2485011
    • KAROUI, N. E. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717-2756. MR2485011
    • (2008) Ann. Statist. , vol.36 , pp. 2717-2756
    • Karoui, N.E.1
  • 30
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • MR1805787
    • KNIGHT, K. and FU, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28 1356-1378. MR1805787
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 31
    • 50249159453 scopus 로고    scopus 로고
    • Determining the number of components in a factor model from limited noisy data
    • KRITCHMAN, S. and NADLER, B. (2008). Determining the number of components in a factor model from limited noisy data. Chemometrics and Intelligent Laboratory Systems 94 19-32.
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.94 , pp. 19-32
    • Kritchman, S.1    Nadler, B.2
  • 33
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • MR2026339
    • LEDOIT, O. andWOLF, M. (2003). A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88 365-411. MR2026339
    • (2003) J. Multivariate Anal. , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 35
    • 78649400333 scopus 로고    scopus 로고
    • Maximum likelihood estimation of intrinsic dimension
    • MIT Press, Cambridge, MA
    • LEVINA, E. and BICKEL, P. (2005). Maximum likelihood estimation of intrinsic dimension. In Advances in NIPS 17 777-784. MIT Press, Cambridge, MA.
    • (2005) Advances in NIPS , vol.17 , pp. 777-784
    • Levina, E.1    Bickel, P.2
  • 37
    • 0000957593 scopus 로고
    • Principal components regression in exploratory statistical research
    • MASSY, W. F. (1965). Principal components regression in exploratory statistical research. J. Amer. Statist. Assoc. 60 234-246.
    • (1965) J. Amer. Statist. Assoc. , vol.60 , pp. 234-246
    • Massy, W.F.1
  • 38
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for highdimensional data
    • MR2488351
    • MEINSHAUSEN, N. and YU, B. (2009). Lasso-type recovery of sparse representations for highdimensional data. Ann. Statist. 37 246-270. MR2488351
    • (2009) Ann. Statist. , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 41
    • 62349121558 scopus 로고    scopus 로고
    • Finite sample approximation results for principal component analysis: A matrix perturbation approach
    • MR2485013
    • NADLER, B. (2008). Finite sample approximation results for principal component analysis: A matrix perturbation approach. Ann. Statist. 36 2791-2817. MR2485013
    • (2008) Ann. Statist. , vol.36 , pp. 2791-2817
    • Nadler, B.1
  • 42
    • 0003637220 scopus 로고    scopus 로고
    • Preventing overfitting of cross-validation data
    • Morgan Kaufmann, San Francisco, CA
    • NG, A. (1997). Preventing overfitting of cross-validation data. In 14th International Conference on Machine Learning 245-253. Morgan Kaufmann, San Francisco, CA.
    • (1997) 14th International Conference on Machine Learning , pp. 245-253
    • Ng, A.1
  • 44
    • 52649131369 scopus 로고    scopus 로고
    • On the dangers of cross-valdation: An experimental evaluation
    • SIAM, Philadelphia, PA
    • RAO, R., FUNG, G. and ROSALES, R. (2008). On the dangers of cross-valdation: An experimental evaluation. In SIAM Data Mining. SIAM, Philadelphia, PA.
    • (2008) SIAM Data Mining.
    • Rao, R.1    Fung, G.2    Rosales, R.3
  • 45
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • REUNANEN, J. (2003). Overfitting in making comparisons between variable selection methods. J.Mach. Learn. Res. 3 1371-1382.
    • (2003) J.Mach. Learn. Res. , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 46
    • 21844518517 scopus 로고
    • Multivariate locally weighted least squares regression
    • MR1311979
    • RUPPERT, D. and WAND, M. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22 1346-1370. MR1311979
    • (1994) Ann. Statist. , vol.22 , pp. 1346-1370
    • Ruppert, D.1    Wand, M.2
  • 47
    • 0004170286 scopus 로고    scopus 로고
    • Springer, New York. MR1693648
    • SASTRY, S. (1999). Nonlinear Systems. Springer, New York. MR1693648
    • (1999) Nonlinear Systems
    • Sastry, S.1
  • 48
    • 21144474350 scopus 로고
    • Linear model selection by cross-validation
    • MR1224373
    • SHAO, J. (1993). Linear model selection by cross-validation. J. Amer. Statist. Assoc. 88 486-494. MR1224373
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 486-494
    • Shao, J.1
  • 49
    • 0042304469 scopus 로고
    • Bootstrap sample size in nonregular cases
    • MR1227529
    • SHAO, J. (1994). Bootstrap sample size in nonregular cases. Proc. Amer. Math. Soc. 122 1251-1262. MR1227529
    • (1994) Proc. Amer. Math. Soc. , vol.122 , pp. 1251-1262
    • Shao, J.1
  • 50
    • 0030537683 scopus 로고    scopus 로고
    • Bootstrap model selection
    • MR1395733
    • SHAO, J. (1996). Bootstrap model selection. J. Amer. Statist. Assoc. 91 655-665. MR1395733
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 655-665
    • Shao, J.1
  • 53
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • TENENBAUM, J.B., DE SILVA, V. and LANGFORD, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science 290 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 54
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 55
    • 0002692783 scopus 로고
    • Soft modeling by latent variables: The nonlinear iterative partial least squares approach
    • Papers in Honour of M. S. Bartlett (J. Gani, ed.), Univ. Sheffield, Sheffield. MR0431486
    • WOLD, H. (1975). Soft modeling by latent variables: The nonlinear iterative partial least squares approach. In Perspectives in Probability and Statistics, Papers in Honour of M. S. Bartlett (J. Gani, ed.) 117-142. Univ. Sheffield, Sheffield. MR0431486
    • (1975) Perspectives in Probability and Statistics , pp. 117-142
    • Wold, H.1
  • 57
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • MR2415601
    • WU, T. T. and LANGE, K. (2008). Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Statist. 2 224-244. MR2415601
    • (2008) Ann. Appl. Statist. , vol.2 , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 58
    • 16244369741 scopus 로고    scopus 로고
    • A methodological comparison of age-period-cohort models: The intrinsic estimator and conventional generalized linear models
    • YANG, Y., FU, W. and LAND, K. (2004). A methodological comparison of age-period-cohort models: The intrinsic estimator and conventional generalized linear models. Sociological Methodology 34 75-110.
    • (2004) Sociological Methodology , vol.34 , pp. 75-110
    • Yang, Y.1    Fu, W.2    Land, K.3
  • 59
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 60
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • MR2137327
    • ZOU, H. and HASTIE, T. (2005). Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 301-320. MR2137327
    • (2005) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.