-
3
-
-
34547328617
-
Standing waves for nonlinear Schrödinger equations with a general nonlinearity
-
J. Byeon and L. Jeanjean. Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Analysis 185 (2007), 185-200.
-
(2007)
Arch. Ration. Mech. Analysis
, vol.185
, pp. 185-200
-
-
Byeon, J.1
Jeanjean, L.2
-
4
-
-
36248941304
-
Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity
-
J. Byeon and L. Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete Contin. Dynam. Syst. 19 (2007), 255-269.
-
(2007)
Discrete Contin. Dynam. Syst.
, vol.19
, pp. 255-269
-
-
Byeon, J.1
Jeanjean, L.2
-
5
-
-
54249084385
-
Erratum: Standing waves for nonlinear Schrödinger equations with a general nonlinearity
-
J. Byeon and L. Jeanjean. Erratum: standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Analysis 190 (2008), 549-551.
-
(2008)
Arch. Ration. Mech. Analysis
, vol.190
, pp. 549-551
-
-
Byeon, J.1
Jeanjean, L.2
-
6
-
-
0142230503
-
Standing waves with critical frequency for nonlinear Schrödinger equations. II
-
J. Byeon and Z.-Q. Wang. Standing waves with critical frequency for nonlinear Schrödinger equations. II. Calc. Var. PDEs 18 (2003), 207-219.
-
(2003)
Calc. Var. PDEs
, vol.18
, pp. 207-219
-
-
Byeon, J.1
Wang, Z.-Q.2
-
7
-
-
45849139773
-
Standing waves for nonlinear Schrödinger equations with a general nonlinearity: One and two dimensional cases
-
J. Byeon, L. Jeanjean and K. Tanaka. Standing waves for nonlinear Schrödinger equations with a general nonlinearity: one and two dimensional cases. Commun. PDEs 33 (2008), 1113-1136.
-
(2008)
Commun. PDEs
, vol.33
, pp. 1113-1136
-
-
Byeon, J.1
Jeanjean, L.2
Tanaka, K.3
-
8
-
-
33644603110
-
(Semi)classical limit of the Hartree equation with harmonic potential
-
R. Carles, N. Mauser and H. Stimming. (Semi)classical limit of the Hartree equation with harmonic potential. SIAM J. Appl. Math. 66 (2005), 29-56.
-
(2005)
SIAM J. Appl. Math.
, vol.66
, pp. 29-56
-
-
Carles, R.1
Mauser, N.2
Stimming, H.3
-
9
-
-
5444256656
-
Semilinear Schrödinger equations
-
New York: Courant Institute of Mathemetical Science
-
T. Cazenave. Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10 (New York: Courant Institute of Mathemetical Science, 2003).
-
(2003)
Courant Lecture Notes in Mathematics
, vol.10
-
-
Cazenave, T.1
-
10
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
T. Cazenave and P. L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85 (1982), 549-561.
-
(1982)
Commun. Math. Phys.
, vol.85
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.L.2
-
11
-
-
18844377921
-
Semiclassical states for NLS equations with magnetic potentials having polynomial growths
-
S. Cingolani and S. Secchi. Semiclassical states for NLS equations with magnetic potentials having polynomial growths. J. Math. Phys. 46 (2005), 053503.
-
(2005)
J. Math. Phys.
, vol.46
, pp. 053503
-
-
Cingolani, S.1
Secchi, S.2
-
12
-
-
68549106030
-
Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions
-
S. Cingolani, L. Jeanjean and S. Secchi. Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions. ESAIM: Control Optim. Calc. Variations 15 (2009), 653-675.
-
(2009)
ESAIM: Control Optim. Calc. Variations
, vol.15
, pp. 653-675
-
-
Cingolani, S.1
Jeanjean, L.2
Secchi, S.3
-
13
-
-
84968502322
-
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
-
V. Coti Zelati and P. H. Rabinowitz. Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4 (1991), 693-727.
-
(1991)
J. Am. Math. Soc.
, vol.4
, pp. 693-727
-
-
Zelati, V.C.1
Rabinowitz, P.H.2
-
14
-
-
79551496714
-
Derivation of the nonlinear Schrödinger equation from a many body Coulomb system
-
L. Erdos and H.-T. Yau. Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5 (2001), 1169-1205.
-
(2001)
Adv. Theor. Math. Phys.
, vol.5
, pp. 1169-1205
-
-
Erdos, L.1
Yau, H.-T.2
-
16
-
-
0036101479
-
On the point-particle (Newtonian) limit of the nonlinear Hartree equation
-
J. Fröhlich, T.-P. Tsai and H.-T. Yau. On the point-particle (Newtonian) limit of the nonlinear Hartree equation. Commun. Math. Phys. 225 (2002), 223-274.
-
(2002)
Commun. Math. Phys.
, vol.225
, pp. 223-274
-
-
Fröhlich, J.1
Tsai, T.-P.2
Yau, H.-T.3
-
18
-
-
0041743811
-
A remark on least energy solutions in RN
-
L. Jeanjean and K. Tanaka. A remark on least energy solutions in RN. Proc. Am. Math. Soc. 131 (2003), 2399-2408.
-
(2003)
Proc. Am. Math. Soc.
, vol.131
, pp. 2399-2408
-
-
Jeanjean, L.1
Tanaka, K.2
-
19
-
-
84916181784
-
Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation
-
E. H. Lieb. Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1976), 93-105.
-
(1976)
Stud. Appl. Math.
, vol.57
, pp. 93-105
-
-
Lieb, E.H.1
-
20
-
-
0004148844
-
-
Providence, RI: American Mathematical Society
-
E. H. Lieb and M. Loss. Analysis (Providence, RI: American Mathematical Society, 1997).
-
(1997)
Analysis
-
-
Lieb, E.H.1
Loss, M.2
-
21
-
-
84956231403
-
The Choquard equation and related questions
-
P. L. Lions. The Choquard equation and related questions. Nonlin. Analysis 4 (1980), 1063-1072.
-
(1980)
Nonlin. Analysis
, vol.4
, pp. 1063-1072
-
-
Lions, P.L.1
-
22
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case. II
-
P. L. Lions. The concentration-compactness principle in the calculus of variations. The locally compact case. II. Annales Inst. H. Poincaŕe Analyse Non Lińeaire 1 (1984), 223-283.
-
(1984)
Annales Inst. H. Poincaŕe Analyse Non Lińeaire
, vol.1
, pp. 223-283
-
-
Lions, P.L.1
-
23
-
-
76549109293
-
Stationary solutions for the non-linear Hartree equations with a slowly varying potential
-
M. Macr̀i and M. Nolasco. Stationary solutions for the non-linear Hartree equations with a slowly varying potential. Nonlin. Diff. Eqns Applic. 16 (2009), 681-715.
-
(2009)
Nonlin. Diff. Eqns Applic.
, vol.16
, pp. 681-715
-
-
MacR̀i, M.1
Nolasco, M.2
-
24
-
-
0033096510
-
An analytical approach to the Schödinger-Newton equations
-
I. M. Moroz and P. Tod. An analytical approach to the Schödinger-Newton equations. Nonlinearity 12 (1999), 201-216.
-
(1999)
Nonlinearity
, vol.12
, pp. 201-216
-
-
Moroz, I.M.1
Tod, P.2
-
25
-
-
0032349239
-
Spherically symmetric solutions of the Schrödinger- Newton equations
-
I. M. Moroz, R. Penrose and P. Tod. Spherically symmetric solutions of the Schrödinger- Newton equations. Class. Quant. Grav. 15 (1998), 2733-2742.
-
(1998)
Class. Quant. Grav.
, vol.15
, pp. 2733-2742
-
-
Moroz, I.M.1
Penrose, R.2
Tod, P.3
-
27
-
-
0003201639
-
Singular integrals and differentiability properties of functions
-
Princeton University Press
-
E. M. Stein. Singular integrals and differentiability properties of functions, Princeton Mathematical Series, vol. 30 (Princeton University Press, 1970).
-
(1970)
Princeton Mathematical Series
, vol.30
-
-
Stein, E.M.1
-
28
-
-
0003230098
-
The nonlinear Schrödinger equation: Self-focusing and wave collapse
-
Springer
-
P. L. Sulem and C. Sulem. The nonlinear Schrödinger equation: self-focusing and wave collapse, Applied Mathematical Sciences, vol. 139 (Springer, 1999).
-
(1999)
Applied Mathematical Sciences
, vol.139
-
-
Sulem, P.L.1
Sulem, C.2
-
29
-
-
59349120506
-
Strongly interacting bumps for the Schrödinger-Newton equation
-
J. Wei and M. Winter. Strongly interacting bumps for the Schrödinger-Newton equation. J. Math. Phys. 50 (2009), 012905.
-
(2009)
J. Math. Phys.
, vol.50
, pp. 012905
-
-
Wei, J.1
Winter, M.2
|