메뉴 건너뛰기




Volumn 33, Issue 6, 2008, Pages 1113-1136

Standing waves for nonlinear Schrödinger equations with a general nonlinearity: One and two dimensional cases

Author keywords

Berestycki Lions conditions; Nonlinear Schr dinger equations; Standing waves; Variational methods

Indexed keywords


EID: 45849139773     PISSN: 03605302     EISSN: 15324133     Source Type: Journal    
DOI: 10.1080/03605300701518174     Document Type: Article
Times cited : (56)

References (33)
  • 2
  • 3
    • 0040435197 scopus 로고    scopus 로고
    • Multiplicity results for some nonlinear Schrödinger equations with potentials
    • Ambrosetti, A., Malchiodi, A., Secchi, S. (2001). Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159:253-271.
    • (2001) Arch. Ration. Mech. Anal , vol.159 , pp. 253-271
    • Ambrosetti, A.1    Malchiodi, A.2    Secchi, S.3
  • 5
    • 0000061307 scopus 로고
    • Equations de Champs scalaires euclidens non linéaires dans le plan
    • and Publications du Laboratoire d'Analyse Numérique, Université de Paris VI
    • Berestycki, H., Gallouët, T., Kavian, O. (1984). Equations de Champs scalaires euclidens non linéaires dans le plan. C.R. Acad. Sci; Paris Ser. I Math. 297:307-310 and Publications du Laboratoire d'Analyse Numérique, Université de Paris VI.
    • (1984) C.R. Acad. Sci; Paris Ser. I Math , vol.297 , pp. 307-310
    • Berestycki, H.1    Gallouët, T.2    Kavian, O.3
  • 6
    • 34547328617 scopus 로고    scopus 로고
    • Standing waves for nonlinear Schrödinger equations with a general nonlinearity
    • Byeon, J., Jeanjean, L. (2007). Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185:185-200.
    • (2007) Arch. Ration. Mech. Anal , vol.185 , pp. 185-200
    • Byeon, J.1    Jeanjean, L.2
  • 7
    • 0036027321 scopus 로고    scopus 로고
    • Standing waves with a critical frequency for nonlinear Schrödinger equations
    • Byeon, J., Wang, Z.-Q. (2002). Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165:295-316.
    • (2002) Arch. Ration. Mech. Anal , vol.165 , pp. 295-316
    • Byeon, J.1    Wang, Z.-Q.2
  • 8
    • 0142230503 scopus 로고    scopus 로고
    • Standing waves with a critical frequency for nonlinear Schrödinger equations II
    • Byeon, J., Wang, Z.-Q. (2003). Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calculus of Variations and PDE 18:207-219.
    • (2003) Calculus of Variations and PDE , vol.18 , pp. 207-219
    • Byeon, J.1    Wang, Z.-Q.2
  • 9
    • 10844253774 scopus 로고    scopus 로고
    • Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations
    • Byeon, J., Oshita, Y. (2004). Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations. Comm. PDE 29:1877-1904.
    • (2004) Comm. PDE , vol.29 , pp. 1877-1904
    • Byeon, J.1    Oshita, Y.2
  • 10
    • 33747045188 scopus 로고    scopus 로고
    • Multi-peak periodic semiclassical states for a class of nonlinear Schrödinger equations
    • Cingolani S., Nolasco, M. (1998). Multi-peak periodic semiclassical states for a class of nonlinear Schrödinger equations. Proc. Roy. Soc. Edinburgh Sect. A 128:1249-1260.
    • (1998) Proc. Roy. Soc. Edinburgh Sect. A , vol.128 , pp. 1249-1260
    • Cingolani, S.1    Nolasco, M.2
  • 11
    • 0033637770 scopus 로고    scopus 로고
    • Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions
    • Cingolani, S., Lazzo, M. (2000). Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differential Equations 160:118-138.
    • (2000) J. Differential Equations , vol.160 , pp. 118-138
    • Cingolani, S.1    Lazzo, M.2
  • 14
    • 0005602251 scopus 로고    scopus 로고
    • The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations
    • Dancer, E. N., Lam, K. Y., Yan, S. (1998). The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations. Abstr. Appl. Anal. 3:293-318.
    • (1998) Abstr. Appl. Anal , vol.3 , pp. 293-318
    • Dancer, E.N.1    Lam, K.Y.2    Yan, S.3
  • 15
    • 0001341199 scopus 로고    scopus 로고
    • Local mountain passes for semilinear elliptic problems in unbounded domains
    • Del Pino, M., Felmer, P. L. (1996). Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and PDE 4:121-137.
    • (1996) Calculus of Variations and PDE , vol.4 , pp. 121-137
    • Del Pino, M.1    Felmer, P.L.2
  • 16
    • 0031237479 scopus 로고    scopus 로고
    • Semi-classical states for nonlinear Schrödinger equations
    • Del Pino, M., Felmer, P. L. (1997). Semi-classical states for nonlinear Schrödinger equations. J. Functional Analysis 149:245-265.
    • (1997) J. Functional Analysis , vol.149 , pp. 245-265
    • Del Pino, M.1    Felmer, P.L.2
  • 17
    • 0000260189 scopus 로고    scopus 로고
    • Multi-peak bound states for nonlinear Schrödinger equations
    • Del Pino, M., Felmer, P. L. (1998). Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré 15:127-149.
    • (1998) Ann. Inst. Henri Poincaré , vol.15 , pp. 127-149
    • Del Pino, M.1    Felmer, P.L.2
  • 18
    • 0036026058 scopus 로고    scopus 로고
    • Semi-classical states for nonlinear Schrödinger equations: A variational reduction method
    • Del Pino, M., Felmer, P. L. (2002). Semi-classical states for nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324(1):1-32.
    • (2002) Math. Ann , vol.324 , Issue.1 , pp. 1-32
    • Del Pino, M.1    Felmer, P.L.2
  • 19
    • 0001613187 scopus 로고
    • Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential
    • Floer, A., Weinstein, A. (1986). Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential. J. Functional Analysis 69:397-408.
    • (1986) J. Functional Analysis , vol.69 , pp. 397-408
    • Floer, A.1    Weinstein, A.2
  • 20
    • 45849130830 scopus 로고    scopus 로고
    • Gilbarg, D., Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order. 2nd ed. Grundlehren 224, Berlin, Heidelberg, New York and Tokyo: Springer.
    • Gilbarg, D., Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order. 2nd ed. Grundlehren 224, Berlin, Heidelberg, New York and Tokyo: Springer.
  • 21
    • 0000616123 scopus 로고    scopus 로고
    • Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
    • Gui, C. (1996). Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. PDE 21:787-820.
    • (1996) Comm. PDE , vol.21 , pp. 787-820
    • Gui, C.1
  • 23
    • 20144362610 scopus 로고    scopus 로고
    • A note on a mountain pass characterization of least energy solutions
    • Jeanjean, L., Tanaka, K. (2003b). A note on a mountain pass characterization of least energy solutions. Advanced Nonlinear Studies 3:461-471.
    • (2003) Advanced Nonlinear Studies , vol.3 , pp. 461-471
    • Jeanjean, L.1    Tanaka, K.2
  • 24
    • 7244258733 scopus 로고    scopus 로고
    • Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
    • Jeanjean, L., Tanaka, K. (2004). Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calculus of Variations and PDE 21:287-318.
    • (2004) Calculus of Variations and PDE , vol.21 , pp. 287-318
    • Jeanjean, L.1    Tanaka, K.2
  • 25
    • 0000825718 scopus 로고    scopus 로고
    • On interacting bumps of semi-classical states of nonlinear Schrödinger equations
    • Kang, X., Wei, J. (2000). On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differential Equations 5:899-928.
    • (2000) Adv. Differential Equations , vol.5 , pp. 899-928
    • Kang, X.1    Wei, J.2
  • 26
    • 0000264842 scopus 로고    scopus 로고
    • On a singularly perturbed elliptic equation
    • Li, Y. Y. (1997). On a singularly perturbed elliptic equation. Adv. Differential Equations 2:955-980.
    • (1997) Adv. Differential Equations , vol.2 , pp. 955-980
    • Li, Y.Y.1
  • 27
    • 85030719142 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case, part II
    • Lions, P. L. (1984). The concentration-compactness principle in the calculus of variations. The locally compact case, part II. Ann. Inst. Henri Poincaré 1:223-283.
    • (1984) Ann. Inst. Henri Poincaré , vol.1 , pp. 223-283
    • Lions, P.L.1
  • 28
  • 29
    • 0000998584 scopus 로고
    • On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
    • Oh, Y. G. (1990). On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131:223-253.
    • (1990) Comm. Math. Phys , vol.131 , pp. 223-253
    • Oh, Y.G.1
  • 30
    • 38249018883 scopus 로고
    • A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations
    • Ogawa, T. (1990). A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14:765-769.
    • (1990) Nonlinear Anal , vol.14 , pp. 765-769
    • Ogawa, T.1
  • 32
    • 34249835055 scopus 로고
    • On a class of nonlinear Schrödinger equations
    • Rabinowitz, P. H. (1992). On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43:270-291.
    • (1992) Z. Angew. Math. Phys , vol.43 , pp. 270-291
    • Rabinowitz, P.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.