-
2
-
-
0031313734
-
Semiclassical states of nonlinear Schrödinger equations
-
Ambrosetti, A., Badiale, M., Cingolani, S. (1997). Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140:285-300.
-
(1997)
Arch. Ration. Mech. Anal
, vol.140
, pp. 285-300
-
-
Ambrosetti, A.1
Badiale, M.2
Cingolani, S.3
-
3
-
-
0040435197
-
Multiplicity results for some nonlinear Schrödinger equations with potentials
-
Ambrosetti, A., Malchiodi, A., Secchi, S. (2001). Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159:253-271.
-
(2001)
Arch. Ration. Mech. Anal
, vol.159
, pp. 253-271
-
-
Ambrosetti, A.1
Malchiodi, A.2
Secchi, S.3
-
5
-
-
0000061307
-
Equations de Champs scalaires euclidens non linéaires dans le plan
-
and Publications du Laboratoire d'Analyse Numérique, Université de Paris VI
-
Berestycki, H., Gallouët, T., Kavian, O. (1984). Equations de Champs scalaires euclidens non linéaires dans le plan. C.R. Acad. Sci; Paris Ser. I Math. 297:307-310 and Publications du Laboratoire d'Analyse Numérique, Université de Paris VI.
-
(1984)
C.R. Acad. Sci; Paris Ser. I Math
, vol.297
, pp. 307-310
-
-
Berestycki, H.1
Gallouët, T.2
Kavian, O.3
-
6
-
-
34547328617
-
Standing waves for nonlinear Schrödinger equations with a general nonlinearity
-
Byeon, J., Jeanjean, L. (2007). Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185:185-200.
-
(2007)
Arch. Ration. Mech. Anal
, vol.185
, pp. 185-200
-
-
Byeon, J.1
Jeanjean, L.2
-
7
-
-
0036027321
-
Standing waves with a critical frequency for nonlinear Schrödinger equations
-
Byeon, J., Wang, Z.-Q. (2002). Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165:295-316.
-
(2002)
Arch. Ration. Mech. Anal
, vol.165
, pp. 295-316
-
-
Byeon, J.1
Wang, Z.-Q.2
-
8
-
-
0142230503
-
Standing waves with a critical frequency for nonlinear Schrödinger equations II
-
Byeon, J., Wang, Z.-Q. (2003). Standing waves with a critical frequency for nonlinear Schrödinger equations II. Calculus of Variations and PDE 18:207-219.
-
(2003)
Calculus of Variations and PDE
, vol.18
, pp. 207-219
-
-
Byeon, J.1
Wang, Z.-Q.2
-
9
-
-
10844253774
-
Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations
-
Byeon, J., Oshita, Y. (2004). Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations. Comm. PDE 29:1877-1904.
-
(2004)
Comm. PDE
, vol.29
, pp. 1877-1904
-
-
Byeon, J.1
Oshita, Y.2
-
10
-
-
33747045188
-
Multi-peak periodic semiclassical states for a class of nonlinear Schrödinger equations
-
Cingolani S., Nolasco, M. (1998). Multi-peak periodic semiclassical states for a class of nonlinear Schrödinger equations. Proc. Roy. Soc. Edinburgh Sect. A 128:1249-1260.
-
(1998)
Proc. Roy. Soc. Edinburgh Sect. A
, vol.128
, pp. 1249-1260
-
-
Cingolani, S.1
Nolasco, M.2
-
11
-
-
0033637770
-
Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions
-
Cingolani, S., Lazzo, M. (2000). Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions. J. Differential Equations 160:118-138.
-
(2000)
J. Differential Equations
, vol.160
, pp. 118-138
-
-
Cingolani, S.1
Lazzo, M.2
-
14
-
-
0005602251
-
The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations
-
Dancer, E. N., Lam, K. Y., Yan, S. (1998). The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations. Abstr. Appl. Anal. 3:293-318.
-
(1998)
Abstr. Appl. Anal
, vol.3
, pp. 293-318
-
-
Dancer, E.N.1
Lam, K.Y.2
Yan, S.3
-
15
-
-
0001341199
-
Local mountain passes for semilinear elliptic problems in unbounded domains
-
Del Pino, M., Felmer, P. L. (1996). Local mountain passes for semilinear elliptic problems in unbounded domains. Calculus of Variations and PDE 4:121-137.
-
(1996)
Calculus of Variations and PDE
, vol.4
, pp. 121-137
-
-
Del Pino, M.1
Felmer, P.L.2
-
16
-
-
0031237479
-
Semi-classical states for nonlinear Schrödinger equations
-
Del Pino, M., Felmer, P. L. (1997). Semi-classical states for nonlinear Schrödinger equations. J. Functional Analysis 149:245-265.
-
(1997)
J. Functional Analysis
, vol.149
, pp. 245-265
-
-
Del Pino, M.1
Felmer, P.L.2
-
17
-
-
0000260189
-
Multi-peak bound states for nonlinear Schrödinger equations
-
Del Pino, M., Felmer, P. L. (1998). Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré 15:127-149.
-
(1998)
Ann. Inst. Henri Poincaré
, vol.15
, pp. 127-149
-
-
Del Pino, M.1
Felmer, P.L.2
-
18
-
-
0036026058
-
Semi-classical states for nonlinear Schrödinger equations: A variational reduction method
-
Del Pino, M., Felmer, P. L. (2002). Semi-classical states for nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324(1):1-32.
-
(2002)
Math. Ann
, vol.324
, Issue.1
, pp. 1-32
-
-
Del Pino, M.1
Felmer, P.L.2
-
19
-
-
0001613187
-
Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential
-
Floer, A., Weinstein, A. (1986). Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential. J. Functional Analysis 69:397-408.
-
(1986)
J. Functional Analysis
, vol.69
, pp. 397-408
-
-
Floer, A.1
Weinstein, A.2
-
20
-
-
45849130830
-
-
Gilbarg, D., Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order. 2nd ed. Grundlehren 224, Berlin, Heidelberg, New York and Tokyo: Springer.
-
Gilbarg, D., Trudinger, N. S. (1983). Elliptic Partial Differential Equations of Second Order. 2nd ed. Grundlehren 224, Berlin, Heidelberg, New York and Tokyo: Springer.
-
-
-
-
21
-
-
0000616123
-
Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
-
Gui, C. (1996). Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. PDE 21:787-820.
-
(1996)
Comm. PDE
, vol.21
, pp. 787-820
-
-
Gui, C.1
-
23
-
-
20144362610
-
A note on a mountain pass characterization of least energy solutions
-
Jeanjean, L., Tanaka, K. (2003b). A note on a mountain pass characterization of least energy solutions. Advanced Nonlinear Studies 3:461-471.
-
(2003)
Advanced Nonlinear Studies
, vol.3
, pp. 461-471
-
-
Jeanjean, L.1
Tanaka, K.2
-
24
-
-
7244258733
-
Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
-
Jeanjean, L., Tanaka, K. (2004). Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calculus of Variations and PDE 21:287-318.
-
(2004)
Calculus of Variations and PDE
, vol.21
, pp. 287-318
-
-
Jeanjean, L.1
Tanaka, K.2
-
25
-
-
0000825718
-
On interacting bumps of semi-classical states of nonlinear Schrödinger equations
-
Kang, X., Wei, J. (2000). On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differential Equations 5:899-928.
-
(2000)
Adv. Differential Equations
, vol.5
, pp. 899-928
-
-
Kang, X.1
Wei, J.2
-
26
-
-
0000264842
-
On a singularly perturbed elliptic equation
-
Li, Y. Y. (1997). On a singularly perturbed elliptic equation. Adv. Differential Equations 2:955-980.
-
(1997)
Adv. Differential Equations
, vol.2
, pp. 955-980
-
-
Li, Y.Y.1
-
27
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case, part II
-
Lions, P. L. (1984). The concentration-compactness principle in the calculus of variations. The locally compact case, part II. Ann. Inst. Henri Poincaré 1:223-283.
-
(1984)
Ann. Inst. Henri Poincaré
, vol.1
, pp. 223-283
-
-
Lions, P.L.1
-
28
-
-
84946264643
-
a
-
a. Comm. PDE 13:1499-1519.
-
(1988)
Comm. PDE
, vol.13
, pp. 1499-1519
-
-
Oh, Y.G.1
-
29
-
-
0000998584
-
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
-
Oh, Y. G. (1990). On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131:223-253.
-
(1990)
Comm. Math. Phys
, vol.131
, pp. 223-253
-
-
Oh, Y.G.1
-
30
-
-
38249018883
-
A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations
-
Ogawa, T. (1990). A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14:765-769.
-
(1990)
Nonlinear Anal
, vol.14
, pp. 765-769
-
-
Ogawa, T.1
-
32
-
-
34249835055
-
On a class of nonlinear Schrödinger equations
-
Rabinowitz, P. H. (1992). On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43:270-291.
-
(1992)
Z. Angew. Math. Phys
, vol.43
, pp. 270-291
-
-
Rabinowitz, P.H.1
|