-
1
-
-
0031313734
-
Semiclassical states of nonlinear Schrödinger equations
-
A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 140 (1997), 285-300.
-
(1997)
Arch. Ration. Mech. Anal
, vol.140
, pp. 285-300
-
-
Ambrosetti, A.1
Badiale, M.2
Cingolani, S.3
-
2
-
-
0040435197
-
Multiplicity results for some nonlinear Schrödinger equations with potentials
-
A. Ambrosetti, A. Malchiodi and S. Secchi, Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Ration. Mech. Anal., 159 (2001), 253-271.
-
(2001)
Arch. Ration. Mech. Anal
, vol.159
, pp. 253-271
-
-
Ambrosetti, A.1
Malchiodi, A.2
Secchi, S.3
-
4
-
-
0000696702
-
Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains
-
J. Byeon, Existence of large positive solutions of some nonlinear elliptic equations on singularly perturbed domains, Comm. in P.D.E., 22 (1997), 1731-1769.
-
(1997)
Comm. in P.D.E
, vol.22
, pp. 1731-1769
-
-
Byeon, J.1
-
5
-
-
34547328617
-
Standing waves for nonlinear Schrödinger equations with a general nonlinearity
-
J. Byeon and L. Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal., 185(2007), 185-200.
-
(2007)
Arch. Ration. Mech. Anal
, vol.185
, pp. 185-200
-
-
Byeon, J.1
Jeanjean, L.2
-
6
-
-
10844253774
-
Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations
-
J. Byeon and Y. Oshita, Existence of multi-bump standing waves with a critical frequency for nonlinear Schrödinger equations, Comm. in P.D.E., 29 (2004), 1877-1904.
-
(2004)
Comm. in P.D.E
, vol.29
, pp. 1877-1904
-
-
Byeon, J.1
Oshita, Y.2
-
7
-
-
0036027321
-
Standing waves with a critical frequency for nonlinear Schrödinger equations
-
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.
-
(2002)
Arch. Ration. Mech. Anal
, vol.165
, pp. 295-316
-
-
Byeon, J.1
Wang, Z.-Q.2
-
8
-
-
0142230503
-
Standing waves with a critical frequency for nonlinear Schrödinger equations II
-
J. Byeon and Z.-Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations II, Calculus of Variations and PDE, 18 (2003), 207-219.
-
(2003)
Calculus of Variations and PDE
, vol.18
, pp. 207-219
-
-
Byeon, J.1
Wang, Z.-Q.2
-
9
-
-
84968502322
-
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
-
V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727.
-
(1991)
J. Amer. Math. Soc
, vol.4
, pp. 693-727
-
-
Coti Zelati, V.1
Rabinowitz, P.H.2
-
11
-
-
0005602251
-
The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations
-
E.N. Dancer, K.Y. Lam and S. Yan, The effect of the graph topology on the existence of multipeak solutions for nonlinear Schrödinger equations, Abstr. Appl. Anal., 3 (1998), 293-318.
-
(1998)
Abstr. Appl. Anal
, vol.3
, pp. 293-318
-
-
Dancer, E.N.1
Lam, K.Y.2
Yan, S.3
-
13
-
-
0001341199
-
Local mountain passes for semilinear elliptic problems in unbounded domains
-
M. Del Pino and P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calculus of Variations and PDE, 4, (1996), 121-137.
-
(1996)
Calculus of Variations and PDE
, vol.4
, pp. 121-137
-
-
Del Pino, M.1
Felmer, P.L.2
-
14
-
-
0031237479
-
Semi-classical states for nonlinear Schrödinger equations
-
M. Del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations, J. Functional Analysis, 49, (1997), 245-265.
-
(1997)
J. Functional Analysis
, vol.49
, pp. 245-265
-
-
Del Pino, M.1
Felmer, P.L.2
-
15
-
-
0000260189
-
Multi-peak bound states for nonlinear Schrödinger equations
-
M. Del Pino and P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, 15, (1998), 127-149.
-
(1998)
Ann. Inst. Henri Poincaré
, vol.15
, pp. 127-149
-
-
Del Pino, M.1
Felmer, P.L.2
-
16
-
-
0036026058
-
Semi-classical states for nonlinear Schrödinger equations: A variational reduction method
-
M. Del Pino and P.L. Felmer, Semi-classical states for nonlinear Schrödinger equations: a variational reduction method, Math. Ann., 324, 1, (2002), 1-32.
-
(2002)
Math. Ann
, vol.324
, Issue.1
, pp. 1-32
-
-
Del Pino, M.1
Felmer, P.L.2
-
17
-
-
0001613187
-
Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential
-
A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equations with a bounded potential, J. Functional Analysis, 69, (1986), 397-408.
-
(1986)
J. Functional Analysis
, vol.69
, pp. 397-408
-
-
Floer, A.1
Weinstein, A.2
-
18
-
-
0003259059
-
Elliptic Partial Differential Equations of Second Order
-
second edition, Springer, Berlin, Heidelberg, New York and Tokyo
-
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," second edition, Grundlehren 224, Springer, Berlin, Heidelberg, New York and Tokyo, 1983.
-
(1983)
Grundlehren
, vol.224
-
-
Gilbarg, D.1
Trudinger, N.S.2
-
19
-
-
0000616123
-
Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method
-
C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method, Comm. in P.D.E., 21, (1996), 787-820.
-
(1996)
Comm. in P.D.E
, vol.21
, pp. 787-820
-
-
Gui, C.1
-
21
-
-
7244258733
-
Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities
-
L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calculus of Variations and PDE, 21, (2004), 287-318.
-
(2004)
Calculus of Variations and PDE
, vol.21
, pp. 287-318
-
-
Jeanjean, L.1
Tanaka, K.2
-
22
-
-
0000825718
-
On interacting bumps of semi-classical states of nonlinear Schrödinger equations
-
X. Kang and J. Wei, On interacting bumps of semi-classical states of nonlinear Schrödinger equations, Adv. Differential Equations, 5, (2000), 899-928.
-
(2000)
Adv. Differential Equations
, vol.5
, pp. 899-928
-
-
Kang, X.1
Wei, J.2
-
23
-
-
0000264842
-
On a singularly perturbed elliptic equation
-
Y.Y. Li, On a singularly perturbed elliptic equation, Adv. Differential Equations, 2, (1997), 955-980.
-
(1997)
Adv. Differential Equations
, vol.2
, pp. 955-980
-
-
Li, Y.Y.1
-
24
-
-
85030719142
-
The concentration-compactness principle in the calculus of variations. The locally compact case, part II
-
P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part II, Ann. Inst. Henri Poincaré, 1, (1984), 223-283.
-
(1984)
Ann. Inst. Henri Poincaré
, vol.1
, pp. 223-283
-
-
Lions, P.L.1
-
25
-
-
84946264643
-
a
-
a, Comm. P.D.E., 13, (1988), 1499-1519.
-
(1988)
Comm. P.D.E
, vol.13
, pp. 1499-1519
-
-
Oh, Y.G.1
-
26
-
-
0000998584
-
On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential
-
Y.G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential, Comm. Math. Phys., 131, (1990), 223-253.
-
(1990)
Comm. Math. Phys
, vol.131
, pp. 223-253
-
-
Oh, Y.G.1
-
27
-
-
0004014565
-
-
Springer-Verlag, New York, Berlin, Heidelberg and Tokyo
-
M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations," Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1984.
-
(1984)
Maximum Principles in Differential Equations
-
-
Protter, M.H.1
Weinberger, H.F.2
-
28
-
-
34249835055
-
On a class of nonlinear Schrödinger equations
-
P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43, (1992), 270-291.
-
(1992)
Z. Angew. Math. Phys
, vol.43
, pp. 270-291
-
-
Rabinowitz, P.H.1
-
30
-
-
34250081368
-
On concentration of positive bound states of nonlinear Schrödinger equations
-
X. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153, (1993), 229-244.
-
(1993)
Comm. Math. Phys
, vol.153
, pp. 229-244
-
-
Wang, X.1
|