메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages

An FPT approach for predicting protein localization from yeast genomic data

Author keywords

[No Author keywords available]

Indexed keywords

FUNGAL PROTEIN;

EID: 79251632184     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0014449     Document Type: Article
Times cited : (3)

References (53)
  • 1
    • 0034714135 scopus 로고    scopus 로고
    • A bayesian system integrating expression data with sequence patterns for localizing proteins: Comprehensive application to the yeast genome
    • Drawid A, Gerstein M (2000) A bayesian system integrating expression data with sequence patterns for localizing proteins: Comprehensive application to the yeast genome. J Mol Biol 301: 1059-1075.
    • (2000) J Mol Biol , vol.301 , pp. 1059-1075
    • Drawid, A.1    Gerstein, M.2
  • 2
    • 0035924075 scopus 로고    scopus 로고
    • Calculating populations of subcellular compartments using density matrix formalism
    • Alexandrov V, Gerstein M (2001) Calculating populations of subcellular compartments using density matrix formalism. Int J Quantum Chemistry 4: 188-195.
    • (2001) Int J Quantum Chemistry , vol.4 , pp. 188-195
    • Alexandrov, V.1    Gerstein, M.2
  • 4
    • 40249110012 scopus 로고    scopus 로고
    • Proloc-go: Utilizing informative gene ontology terms for sequence-based prediction of protein subcellular localization
    • Huang WL, Tung CW, Ho SW, Hwang SF, Ho SY (2008) Proloc-go: Utilizing informative gene ontology terms for sequence-based prediction of protein subcellular localization. BMC Bioinformatics 8: 80.
    • (2008) BMC Bioinformatics , vol.8 , pp. 80
    • Huang, W.L.1    Tung, C.W.2    Ho, S.W.3    Hwang, S.F.4    Ho, S.Y.5
  • 5
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, et al. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98: 4569-4574.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 4569-4574
    • Ito, T.1    Chiba, T.2    Ozawa, R.3    Yoshida, M.4    Hattori, M.5
  • 6
    • 0142052944 scopus 로고    scopus 로고
    • A bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, et al. (2003) A bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302: 449-453.
    • (2003) Science , vol.302 , pp. 449-453
    • Jansen, R.1    Yu, H.2    Greenbaum, D.3    Kluger, Y.4    Krogan, N.J.5
  • 7
    • 0034307634 scopus 로고    scopus 로고
    • Genome-wide analysis relating expression level with protein subcellular localization
    • Drawid A, Jansen R, Gerstein M (2000) Genome-wide analysis relating expression level with protein subcellular localization. Trends Genet 16: 426-30.
    • (2000) Trends Genet , vol.16 , pp. 426-430
    • Drawid, A.1    Jansen, R.2    Gerstein, M.3
  • 8
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • Reinhardt A, Hubbard T (1998) Using neural networks for prediction of the subcellular location of proteins. Nucl Acids Res 26: 2230-2236.
    • (1998) Nucl Acids Res , vol.26 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 9
    • 0025933503 scopus 로고
    • Expert system for predicting protein localization sites in gram-negative bacteria
    • Nakai K, Kanehisa M (1991) Expert system for predicting protein localization sites in gram-negative bacteria. Proteins: Struct Funct Genet 11: 95-110.
    • (1991) Proteins: Struct Funct Genet , vol.11 , pp. 95-110
    • Nakai, K.1    Kanehisa, M.2
  • 10
    • 0027105007 scopus 로고
    • A knowledge base for predicting protein localization sites in eukaryotic cells
    • Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911.
    • (1992) Genomics , vol.14 , pp. 897-911
    • Nakai, K.1    Kanehisa, M.2
  • 11
    • 0030332781 scopus 로고    scopus 로고
    • A probabilistic classification system for predicting the cellular localization sites of proteins
    • Nakai K, Horton P (1996) A probabilistic classification system for predicting the cellular localization sites of proteins. Intell Sys Mol Biol 4: 109-115.
    • (1996) Intell Sys Mol Biol , vol.4 , pp. 109-115
    • Nakai, K.1    Horton, P.2
  • 12
    • 0030624540 scopus 로고    scopus 로고
    • Better prediction of protein cellular localization sites with the k nearest neighbors classifier
    • Nakai K, Horton P (1997) Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Intell Sys Mol Biol 5: 147-152.
    • (1997) Intell Sys Mol Biol , vol.5 , pp. 147-152
    • Nakai, K.1    Horton, P.2
  • 13
    • 0032548904 scopus 로고    scopus 로고
    • Adaptation of protein surfaces to subcellular location
    • Andrade M, O'Donoghue S, Rost B (1998) Adaptation of protein surfaces to subcellular location. J Mol Biol 276: 517-525.
    • (1998) J Mol Biol , vol.276 , pp. 517-525
    • Andrade, M.1    O'Donoghue, S.2    Rost, B.3
  • 15
    • 2942541277 scopus 로고    scopus 로고
    • Predicting co-complexed protein pairs using genomic and proteomic data integration
    • Zhang LV, Wong SL, King OD, Roth FP (2004) Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 5: 38.
    • (2004) BMC Bioinformatics , vol.5 , pp. 38
    • Zhang, L.V.1    Wong, S.L.2    King, O.D.3    Roth, F.P.4
  • 16
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303: 799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 17
    • 0037262841 scopus 로고    scopus 로고
    • Being bayesian about network structure: A bayesian approach tostructure discovery in bayesian networks
    • Friedman N, Koller D (2003) Being bayesian about network structure: A bayesian approach tostructure discovery in bayesian networks. Machine Learning 50: 95-126.
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 18
    • 13244265581 scopus 로고    scopus 로고
    • Information assessment on predicting protein-protein interactions
    • Lin N, Wu B, Jansen R, Gerstein M, Zhao H (2004) Information assessment on predicting protein-protein interactions. BMC Bioinformatics 5: 154.
    • (2004) BMC Bioinformatics , vol.5 , pp. 154
    • Lin, N.1    Wu, B.2    Jansen, R.3    Gerstein, M.4    Zhao, H.5
  • 19
    • 0034602774 scopus 로고    scopus 로고
    • Knowledgebased analysis of microarray gene expression data by using support vector machines
    • Brown M, Grundy W, Lin D, Cristianini N, Sugnet C, et al. (2000) Knowledgebased analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA 97: 262-267.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 262-267
    • Brown, M.1    Grundy, W.2    Lin, D.3    Cristianini, N.4    Sugnet, C.5
  • 20
    • 22244447463 scopus 로고    scopus 로고
    • Assessing the limits of genomic data integration for predicting protein networks
    • Lu LJ, Xia Y, Paccanaro A, Yu H, Gerstein M (2005) Assessing the limits of genomic data integration for predicting protein networks. Genome Res 15: 945-953.
    • (2005) Genome Res , vol.15 , pp. 945-953
    • Lu, L.J.1    Xia, Y.2    Paccanaro, A.3    Yu, H.4    Gerstein, M.5
  • 21
    • 2442449952 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation: A frequent-pattern tree approach
    • Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery 8: 53-87.
    • (2004) Data Mining and Knowledge Discovery , vol.8 , pp. 53-87
    • Han, J.1    Pei, J.2    Yin, Y.3    Mao, R.4
  • 22
    • 0003372359 scopus 로고    scopus 로고
    • Mining frequent patterns by pattern-growth: Methodology and implications
    • Han J, Pei J (2000) Mining frequent patterns by pattern-growth: Methodology and implications. ACM SIGKDD Explorations Newsletter 2: 14-20.
    • (2000) ACM SIGKDD Explorations Newsletter , vol.2 , pp. 14-20
    • Han, J.1    Pei, J.2
  • 23
    • 62649162748 scopus 로고    scopus 로고
    • Uncovering the rules for protein-rotein interactions from yeast genomic data
    • Wang J, Li C, Wang E, Wang X (2009) Uncovering the rules for protein-rotein interactions from yeast genomic data. Proc Natl Acad Sci USA 106: 3752-3757.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 3752-3757
    • Wang, J.1    Li, C.2    Wang, E.3    Wang, X.4
  • 25
    • 0031689529 scopus 로고    scopus 로고
    • Comprehensive, comprehensible, distributed and intelligent databases: Current status
    • Frishman D, Heumann K, Lesk A, Mewes HW (1998) Comprehensive, comprehensible, distributed and intelligent databases: current status. Bioinformatics 14: 551-561.
    • (1998) Bioinformatics , vol.14 , pp. 551-561
    • Frishman, D.1    Heumann, K.2    Lesk, A.3    Mewes, H.W.4
  • 26
    • 0030879154 scopus 로고    scopus 로고
    • Pedantic genome analysis
    • Frishman D, Mewes HW (1997) Pedantic genome analysis. Trends Genet 13: 415-416.
    • (1997) Trends Genet , vol.13 , pp. 415-416
    • Frishman, D.1    Mewes, H.W.2
  • 27
    • 0031813402 scopus 로고    scopus 로고
    • Mips: A database for protein sequences and complete genomes
    • Mewes HW, Hani J, Pfeiffer F, Frishman D (1998) Mips: a database for protein sequences and complete genomes. NuclAcids Res 26: 33-37.
    • (1998) NuclAcids Res , vol.26 , pp. 33-37
    • Mewes, H.W.1    Hani, J.2    Pfeiffer, F.3    Frishman, D.4
  • 28
    • 0032894060 scopus 로고    scopus 로고
    • The yeast proteome database (ypd): A model for the organization and presentation of genome-wide functional data
    • Hodges PE, McKee AH, Davis BP, Payne WE, Garrels JI (1999) The yeast proteome database (ypd): a model for the organization and presentation of genome-wide functional data. Nucl Acids Res 27: 69-73.
    • (1999) Nucl Acids Res , vol.27 , pp. 69-73
    • Hodges, P.E.1    McKee, A.H.2    Davis, B.P.3    Payne, W.E.4    Garrels, J.I.5
  • 29
  • 30
    • 77952298647 scopus 로고    scopus 로고
    • The yeast resource center public image repository: A large database of fluorescence microscopy images
    • Riffle M, Davis T (2010) The yeast resource center public image repository: A large database of fluorescence microscopy images. BMC Bioinfromatics 11: 263.
    • (2010) BMC Bioinfromatics , vol.11 , pp. 263
    • Riffle, M.1    Davis, T.2
  • 31
    • 0033957834 scopus 로고    scopus 로고
    • The swiss-prot protein sequence database and its supplement trembl in 2000
    • Bairoch A, Apweiler R (2000) The swiss-prot protein sequence database and its supplement trembl in 2000. Nucl Acids Res 28: 45-48.
    • (2000) Nucl Acids Res , vol.28 , pp. 45-48
    • Bairoch, A.1    Apweiler, R.2
  • 36
    • 0033956060 scopus 로고    scopus 로고
    • The cog database: A tool for genome-scale analysis of protein functions and evolution
    • Tatusov R, Galperin MY, Natale DA, Koonin EV (2000) The cog database: a tool for genome-scale analysis of protein functions and evolution. Acids Res 28: 33-6.
    • (2000) Acids Res , vol.28 , pp. 33-36
    • Tatusov, R.1    Galperin, M.Y.2    Natale, D.A.3    Koonin, E.V.4
  • 37
    • 0037173615 scopus 로고    scopus 로고
    • Functional profiling of the saccharomyces cerevisiae genome
    • Giaever G, Chu AM, Ni L, Connelly C, Riles L, et al. (2002) Functional profiling of the saccharomyces cerevisiae genome. Nature 418: 387-91.
    • (2002) Nature , vol.418 , pp. 387-391
    • Giaever, G.1    Chu, A.M.2    Ni, L.3    Connelly, C.4    Riles, L.5
  • 38
    • 0032942212 scopus 로고    scopus 로고
    • Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in saccharomyces cerevisiae by gene disruption and northern analysis
    • Shiratori A, Shibata T, Arisawa M, Hanaoka F, Eki T (1999) Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in saccharomyces cerevisiae by gene disruption and northern analysis. Yeast 15: 219-53.
    • (1999) Yeast , vol.15 , pp. 219-253
    • Shiratori, A.1    Shibata, T.2    Arisawa, M.3    Hanaoka, F.4    Eki, T.5
  • 39
    • 0029156375 scopus 로고
    • New open reading frames, one of which is similar to the nifv gene of azotobacter vinelandii, found on a 12.5 kbp fragment of chromosome iv of saccharomyces cerevisiae
    • Verhasselt P, Voet M, Volckaert G (1995) New open reading frames, one of which is similar to the nifv gene of azotobacter vinelandii, found on a 12.5 kbp fragment of chromosome iv of saccharomyces cerevisiae. Yeast 10: 961-6.
    • (1995) Yeast , vol.10 , pp. 961-966
    • Verhasselt, P.1    Voet, M.2    Volckaert, G.3
  • 40
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes
    • Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J Mol Biol 305: 567-580.
    • (2001) J Mol Biol , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    von Heijne, G.3    Sonnhammer, E.L.L.4
  • 41
    • 0032560586 scopus 로고    scopus 로고
    • Unified inventory of established and putative transporters encoded within the complete genome of saccharomyces cerevisiae
    • Paulsen I, Sliwinski MK, Nelissen B, Goffeau A, Saier MH, Jr. (1998) Unified inventory of established and putative transporters encoded within the complete genome of saccharomyces cerevisiae. FEBS Lett 430: 116-25.
    • (1998) FEBS Lett , vol.430 , pp. 116-125
    • Paulsen, I.1    Sliwinski, M.K.2    Nelissen, B.3    Goffeau, A.4    Saier Jr., M.H.5
  • 44
    • 0031240609 scopus 로고    scopus 로고
    • A neural network method for identiHcation of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identi®cation of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. IntJNeural Sys 8: 581-599.
    • (1997) IntJNeural Sys , vol.8 , pp. 581-599
    • Nielsen, H.1    Engelbrecht, J.2    Brunak, S.3    von Heijne, G.4
  • 45
    • 0033044637 scopus 로고    scopus 로고
    • Machine learning approaches for the prediction of signal peptides and other protein sorting signals
    • Nielsen H, Brunak S, von Heijne G (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12: 3-9.
    • (1999) Protein Eng , vol.12 , pp. 3-9
    • Nielsen, H.1    Brunak, S.2    von Heijne, G.3
  • 46
    • 0030614959 scopus 로고    scopus 로고
    • Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • von Heijne G, Nielson H, Engelbrecht J, Brunak S (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 1-6.
    • (1997) Protein Eng , vol.10 , pp. 1-6
    • von Heijne, G.1    Nielson, H.2    Engelbrecht, J.3    Brunak, S.4
  • 47
    • 0022510143 scopus 로고
    • Identifying non-polar transbilayer helices in amino acid sequences of membrane proteins
    • Engelman DM, Steitz TA, Goldman A (1986) Identifying non-polar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem 15: 321-353.
    • (1986) Annu Rev Biophys Biophys Chem , vol.15 , pp. 321-353
    • Engelman, D.M.1    Steitz, T.A.2    Goldman, A.3
  • 48
    • 0031892162 scopus 로고    scopus 로고
    • How many membrane proteins are there?
    • Boyd D, Schierle C, Beckwith J (1998) How many membrane proteins are there? Protein Sci 7: 201-205.
    • (1998) Protein Sci , vol.7 , pp. 201-205
    • Boyd, D.1    Schierle, C.2    Beckwith, J.3
  • 49
    • 0021847027 scopus 로고
    • The detection and classification of membrane-spanning proteins
    • Klein P, Kanehisa M, DeLisi C (1985) The detection and classification of membrane-spanning proteins. Biochim Biophys Acta 815: 468-476.
    • (1985) Biochim Biophys Acta , vol.815 , pp. 468-476
    • Klein, P.1    Kanehisa, M.2    DeLisi, C.3
  • 51
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680-686.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 52
    • 0004155427 scopus 로고    scopus 로고
    • New York: W.H Freeman and Company
    • Stryer L (1996) Biochemistry. New York: W.H Freeman and Company.
    • (1996) Biochemistry
    • Stryer, L.1
  • 53
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Spellman P, Sherlock G, Zhang M, Iyer V, Anders K, et al. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273-3297.
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3    Iyer, V.4    Anders, K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.