메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 2173-2177

The multidimensional function approximation based on constructive wavelet RBF neural network

Author keywords

Interpolate; Uniformly approximation; Wavelet RBF neural networks

Indexed keywords

ARBITRARY PRECISION; CONTINUOUS FUNCTIONS; FEED-FORWARD; HIDDEN NEURONS; INTERPOLATE; MULTIDIMENSIONAL FUNCTION; RBF NEURAL NETWORK; UNIFORMLY APPROXIMATION;

EID: 78751613684     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.07.016     Document Type: Conference Paper
Times cited : (39)

References (29)
  • 1
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • E.D. Sontag Feedforward nets for interpolation and classification J. Comput. Syst. Sci. 45 1992 20 48
    • (1992) J. Comput. Syst. Sci. , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 2
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C.A. Micchelli Interpolation of scattered data: distance matrices and conditionally positive definite functions Constructive Approximation 2 1 1986 11 22
    • (1986) Constructive Approximation , vol.2 , Issue.1 , pp. 11-22
    • Micchelli, C.A.1
  • 3
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew Extreme learning machine: theory and applications Neurocomputing 70 2006 489 501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 4
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • J. Park, and I.W. Sandberg Universal approximation using radial-basis function networks Neural Comput. 3 1991 246 257
    • (1991) Neural Comput. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 5
    • 34147218992 scopus 로고    scopus 로고
    • Research of fractional linear neural network and its ability for nonlinear approach
    • G.-W. Yang, S.-J. Wang, and Q.-Xu. Yan Research of fractional linear neural network and its ability for nonlinear approach Chin. J. Comput. 30 2 2007 189 199
    • (2007) Chin. J. Comput. , vol.30 , Issue.2 , pp. 189-199
    • Yang, G.-W.1    Wang, S.-J.2    Yan, Q.-Xu.3
  • 6
    • 21844505259 scopus 로고
    • Neural networks for localized approximation
    • C.K. Chui, X. Li, and H.N. Mhaskar Neural networks for localized approximation Math. Comput. 63 1994 607 623
    • (1994) Math. Comput. , vol.63 , pp. 607-623
    • Chui, C.K.1    Li, X.2    Mhaskar, H.N.3
  • 7
    • 27844503288 scopus 로고    scopus 로고
    • Limitations of the approximation capabilities of neural networks with one hidden layer
    • C.K. Chui, X. Li, and H.N. Mhaskar Limitations of the approximation capabilities of neural networks with one hidden layer Adv. Comput. Math. 5 1996 233 243
    • (1996) Adv. Comput. Math. , vol.5 , pp. 233-243
    • Chui, C.K.1    Li, X.2    Mhaskar, H.N.3
  • 8
    • 70350418881 scopus 로고    scopus 로고
    • Constructive approximation to real function by wavelet neural networks
    • 101007/s00521-008-0194-2
    • H. Muzhou, H. Xuli, and G. Yixuan Constructive approximation to real function by wavelet neural networks Neural Comput. Appl. 18 8 2009 883 889 10.1007/s00521-008-0194-2
    • (2009) Neural Comput. Appl. , vol.18 , Issue.8 , pp. 883-889
    • Muzhou, H.1    Xuli, H.2    Yixuan, G.3
  • 9
    • 28244460747 scopus 로고    scopus 로고
    • Constructive approximate interpolation by neural networks
    • B. Llanas, and F.J. Sainz Constructive approximate interpolation by neural networks J. Comput. Appl. Math. 188 2006 283 308
    • (2006) J. Comput. Appl. Math. , vol.188 , pp. 283-308
    • Llanas, B.1    Sainz, F.J.2
  • 10
    • 38049039416 scopus 로고    scopus 로고
    • Neural networks for approximation of real functions with the Gaussian functions
    • IEEE Computer Society Press, Los Alamitos, August
    • H. Xuli, and H. Muzhou Neural networks for approximation of real functions with the Gaussian functions Proceedings of the Third International Conference on Natural Computation, vol. 1 IEEE Computer Society Press, Los Alamitos, August 2007 601 605
    • (2007) Proceedings of the Third International Conference on Natural Computation, Vol. 1 , pp. 601-605
    • Xuli, H.1    Muzhou, H.2
  • 11
    • 24344486886 scopus 로고    scopus 로고
    • Simultaneous Lp-approximation order for neural networks
    • Z.B. Xu, and F.L. Cao Simultaneous Lp-approximation order for neural networks Neural Networks 18 2005 914 923
    • (2005) Neural Networks , vol.18 , pp. 914-923
    • Xu, Z.B.1    Cao, F.L.2
  • 12
    • 33747622220 scopus 로고    scopus 로고
    • Applications of radius basis function neural networks in scattered data interpolation
    • B.-t. Miao, and F.-l. Chen Applications of radius basis function neural networks in scattered data interpolation J. Univ. Sci. Technol. Chin. 31 2 2001 136 142
    • (2001) J. Univ. Sci. Technol. Chin. , vol.31 , Issue.2 , pp. 136-142
    • Miao, B.-T.1    Chen, F.-L.2
  • 13
    • 70349327576 scopus 로고    scopus 로고
    • Quasi-interpolation for data fitting by the radial basis functions. Lecture notes in computer science
    • H. Xuli, and H. Muzhou Quasi-interpolation for data fitting by the radial basis functions. Lecture notes in computer science LNCS 4975 2008 541 547
    • (2008) LNCS , vol.4975 , pp. 541-547
    • Xuli, H.1    Muzhou, H.2
  • 14
    • 13844256702 scopus 로고    scopus 로고
    • A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
    • G.B. Huang, P. Saratchandran, and N. Sundararajan A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation IEEE Trans. Neural Networks 16 1 2005 57 67
    • (2005) IEEE Trans. Neural Networks , vol.16 , Issue.1 , pp. 57-67
    • Huang, G.B.1    Saratchandran, P.2    Sundararajan, N.3
  • 15
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • G.B. Huang, and H.A. Babri Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions IEEE Trans. Neural Networks 99 1 1998 224 229
    • (1998) IEEE Trans. Neural Networks , vol.99 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 16
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.-B. Huang, L. Chen, and C.-K. Siew Universal approximation using incremental constructive feedforward networks with random hidden nodes IEEE Trans. Neural Networks 17 4 2006 879 892
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 17
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G.-B. Huang, and L. Chen Convex incremental extreme learning machine Neurocomputing 70 2007 3056 3062
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 18
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • G.-B. Huang, and L. Chen Enhanced random search based incremental extreme learning machine Neurocomputing 71 2008 3460 3468
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 19
    • 0037368037 scopus 로고    scopus 로고
    • Approximation of function and its derivatives using radial basis function networks
    • N.M. Duy, and T.T. Cong Approximation of function and its derivatives using radial basis function networks Appl. Math. Model. 27 2003 197 220
    • (2003) Appl. Math. Model. , vol.27 , pp. 197-220
    • Duy, N.M.1    Cong, T.T.2
  • 20
    • 40549110625 scopus 로고    scopus 로고
    • Best approximation of Gaussian neural networks with nodes uniformly spaced
    • J.I. Mulero Martínez Best approximation of Gaussian neural networks with nodes uniformly spaced IEEE Trans. Neural Networks 19 2 2008 284 298
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.2 , pp. 284-298
    • Mulero Martínez, J.I.1
  • 21
    • 1242331283 scopus 로고    scopus 로고
    • Multi-scale approximation with hierarchical radial basis functions networks
    • S. Ferrari, M. Maggioni, and N.A. Borghese Multi-scale approximation with hierarchical radial basis functions networks IEEE Trans. Neural Networks 15 1 2004 178 188
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.1 , pp. 178-188
    • Ferrari, S.1    Maggioni, M.2    Borghese, N.A.3
  • 22
    • 0037368037 scopus 로고    scopus 로고
    • Approximation of function and its derivatives using radial basis function networks
    • N.M. Duy, and T.T. Cong Approximation of function and its derivatives using radial basis function networks Appl. Math. Model. 27 3 2003 197 220
    • (2003) Appl. Math. Model. , vol.27 , Issue.3 , pp. 197-220
    • Duy, N.M.1    Cong, T.T.2
  • 23
    • 39049127025 scopus 로고    scopus 로고
    • Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network
    • S. Gholizadeh, E. Salajegheh, and P. Torkzadeh Structural optimization with frequency constraints by genetic algorithm using wavelet radial basis function neural network J. Sound Vib. 312 2008 316 331
    • (2008) J. Sound Vib. , vol.312 , pp. 316-331
    • Gholizadeh, S.1    Salajegheh, E.2    Torkzadeh, P.3
  • 24
    • 0000358945 scopus 로고
    • Approximation by superposition of sigmoidal and radial basis functions
    • H.N. Mhaskar, and Ch.A. Michelli Approximation by superposition of sigmoidal and radial basis functions Adv. Appl. Math. 13 1992 350 373
    • (1992) Adv. Appl. Math. , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Michelli . C, A.2
  • 27
    • 66349134965 scopus 로고    scopus 로고
    • Study on performance and application of the wavelet function
    • K.-p. Yu, J.-x. Zou, and B.-y. Yang Study on performance and application of the wavelet function J. Harbin Inst. Technol. 32 2 2000 36 39
    • (2000) J. Harbin Inst. Technol. , vol.32 , Issue.2 , pp. 36-39
    • Yu, K.-P.1    Zou, J.-X.2    Yang, B.-Y.3
  • 29
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • A.M. Charles Interpolation of scattered data: distance matrices and conditionally positive definite functions Constructive Approximation 2 1986 11 22
    • (1986) Constructive Approximation , vol.2 , pp. 11-22
    • Charles, A.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.