메뉴 건너뛰기




Volumn 10, Issue 4, 2010, Pages 421-439

A Bayesian model for repeated measures zero-inflated count data with application to outpatient psychiatric service use

Author keywords

Bayesian inference; hurdle model; repeated measures; zero altered model; zero inflated model

Indexed keywords


EID: 78751535733     PISSN: 1471082X     EISSN: 14770342     Source Type: Journal    
DOI: 10.1177/1471082X0901000404     Document Type: Article
Times cited : (111)

References (52)
  • 3
    • 0034394761 scopus 로고    scopus 로고
    • Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models
    • Browne WJ and Draper D (2000) Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. Computational Statistics, 15, 391-420.
    • (2000) Computational Statistics , vol.15 , pp. 391-420
    • Browne, W.J.1    Draper, D.2
  • 6
    • 0037249736 scopus 로고    scopus 로고
    • Use of Bayesian Markov chain Monte Carlo methods to model cost-of-illness data
    • Cooper NJ, Sutton AJ, Mugford M and Abrams KR (2003) Use of Bayesian Markov chain Monte Carlo methods to model cost-of-illness data. Medical Decision Making, 23, 38-53.
    • (2003) Medical Decision Making , vol.23 , pp. 38-53
    • Cooper, N.J.1    Sutton, A.J.2    Mugford, M.3    Abrams, K.R.4
  • 7
    • 33846424953 scopus 로고    scopus 로고
    • Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis
    • Cooper NJ, Lambert PC, Abrams KR and Sutton AJ (2007) Predicting costs over time using Bayesian Markov chain Monte Carlo methods: an application to early inflammatory polyarthritis. Health Economics, 16, 37-56.
    • (2007) Health Economics , vol.16 , pp. 37-56
    • Cooper, N.J.1    Lambert, P.C.2    Abrams, K.R.3    Sutton, A.J.4
  • 9
    • 0031440106 scopus 로고    scopus 로고
    • Bayesian approach for nonlinear random effect models
    • Dey DK, Chen M-H and Chang H (1997) Bayesian approach for nonlinear random effect models. Biometrics, 53, 1239-52.
    • (1997) Biometrics , vol.53 , pp. 1239-1252
    • Dey, D.K.1    Chen, M.-H.2    Chang, H.3
  • 10
    • 51949111620 scopus 로고
    • Smearing estimate: a nonparametric retransformation method
    • Duan N (1983) Smearing estimate: a nonparametric retransformation method. Journal of the American Statistical Association, 78, 605-10.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 605-610
    • Duan, N.1
  • 11
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • Elliott MR, Gallo JJ, Ten Have TR, Bogner HR,et al.(2005) Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics, 6, 119-43.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • Elliott, M.R.1    Gallo, J.J.2    Ten, H.T.R.3    Bogner, H.R.4
  • 12
    • 33748427185 scopus 로고    scopus 로고
    • Structured additive regression for overdispersed and zero-inflated count data
    • Fahrmeir L and Osuna Echavarría L (2006) Structured additive regression for overdispersed and zero-inflated count data. Applied Stochastic Models in Business and Industry, 22, 351-69.
    • (2006) Applied Stochastic Models in Business and Industry , vol.22 , pp. 351-369
    • Fahrmeir, L.1    Osuna, E.L.2
  • 13
    • 0042042167 scopus 로고    scopus 로고
    • Efficient sampling from the posterior distribution in generalized linear models
    • Gamerman D (1997) Efficient sampling from the posterior distribution in generalized linear models. Statistics and Computing, 7, 57-68.
    • (1997) Statistics and Computing , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 15
    • 0001803816 scopus 로고    scopus 로고
    • Model determination using sampling-based methods
    • In Gilks WR, Richardson S and Spiegelhalter DJ (eds), -, London: Chapman & Hall
    • Gelfand AE (1996) Model determination using sampling-based methods. In Gilks WR, Richardson S and Spiegelhalter DJ (eds), Markov chain Monte Carlo in practice. London: Chapman & Hall, 145-60.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 145-160
    • Gelfand, A.E.1
  • 16
    • 0000539315 scopus 로고
    • Bayesian model choice: asymptotics and exact calculations
    • Series B
    • Gelfand AE and Dey D (1994) Bayesian model choice: asymptotics and exact calculations. Journal of the Royal Statistical Society, Series B, 56, 501-14.
    • (1994) Journal of the Royal Statistical Society , vol.56 , pp. 501-514
    • Gelfand, A.E.1    Dey, D.2
  • 17
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515-33.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 18
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A, Meng XL and Stern H (1996) Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6, 733-807.
    • (1996) Statistica Sinica , vol.6 , pp. 733-807
    • Gelman, A.1    Meng, X.L.2    Stern, H.3
  • 20
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • In Bernardo J, Berger JO, Dawid AP and Smith AFM (eds), 4, Oxford: Oxford University Press
    • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In Bernardo J, Berger JO, Dawid AP and Smith AFM (eds), Bayesian Statistics 4. Oxford: Oxford University Press, 169-94.
    • (1992) Bayesian Statistics , pp. 169-194
    • Geweke, J.1
  • 22
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • Gilks WR and Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41, 337-48.
    • (1992) Applied Statistics , vol.41 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 23
    • 0027292412 scopus 로고
    • Random-effects models for longitudinal data using Gibbs sampling
    • Gilks WR, Wang CC, Yvonnet B and Coursaget P (1993) Random-effects models for longitudinal data using Gibbs sampling. Biometrics, 49, 441-53.
    • (1993) Biometrics , vol.49 , pp. 441-453
    • Gilks, W.R.1    Wang, C.C.2    Yvonnet, B.3    Coursaget, P.4
  • 24
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • Gilks WR, Best NG and Tan KKC (1995) Adaptive rejection Metropolis sampling within Gibbs sampling. Applied Statistics, 44, 455-72.
    • (1995) Applied Statistics , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 25
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711-32.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 26
    • 0004004166 scopus 로고
    • Accounting for excess zeros and sample selection in Poisson and negative binomial regression models
    • Working Paper EC-94-10, Department of Economics, New York University
    • Greene W (1994) Accounting for excess zeros and sample selection in Poisson and negative binomial regression models. Working Paper EC-94-10, Department of Economics, New York University.
    • (1994)
    • Greene, W.1
  • 27
    • 42449132983 scopus 로고    scopus 로고
    • Modelling count data with overdispersion and spatial effects
    • Gschlößl S and Gzado C (2008) Modelling count data with overdispersion and spatial effects. Statistical Papers, 49, 531-52.
    • (2008) Statistical Papers , vol.49 , pp. 531-552
    • Gschlößl, S.1    Gzado, C.2
  • 28
    • 0033635967 scopus 로고    scopus 로고
    • Zero-inflated Poisson and binomial regression with random effects: a case study
    • Hall D (2000) Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics, 56, 1030-39.
    • (2000) Biometrics , vol.56 , pp. 1030-1039
    • Hall, D.1
  • 29
    • 0003941689 scopus 로고
    • Generalized linear models for altered zero probabilities and overdispersion in count data
    • SIMS Technical Report 9, Department of Epidemiology and Biostatistics, University of California, San Francisco
    • Heilbron DC (1989) Generalized linear models for altered zero probabilities and overdispersion in count data. SIMS Technical Report 9, Department of Epidemiology and Biostatistics, University of California, San Francisco.
    • (1989)
    • Heilbron, D.C.1
  • 30
    • 84985657533 scopus 로고
    • Zero-altered and other regression models for count data with added zeros
    • Heilbron DC (1994) Zero-altered and other regression models for count data with added zeros. Biometrical Journal, 36, 531-47.
    • (1994) Biometrical Journal , vol.36 , pp. 531-547
    • Heilbron, D.C.1
  • 33
    • 0026821975 scopus 로고
    • Zero-inflated Poisson regression, with an application to defects in manufacturing
    • Lambert D (1992) Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics, 34, 1-14.
    • (1992) Technometrics , vol.34 , pp. 1-14
    • Lambert, D.1
  • 34
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert PC, Sutton AJ, Burton PR, Abrams KR,et al.(2005) How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24, 2401-28.
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4
  • 35
    • 34247524473 scopus 로고    scopus 로고
    • Growth curve models for zero-inflated count data: an application to smoking behavior
    • Liu H and Power DA (2007) Growth curve models for zero-inflated count data: an application to smoking behavior. Structural Equation Modeling, 14, 247-79.
    • (2007) Structural Equation Modeling , vol.14 , pp. 247-279
    • Liu, H.1    Power, D.A.2
  • 36
    • 17444399651 scopus 로고    scopus 로고
    • Random effect models for repeated measures of zero-inflated count data
    • Min Y and Agresti A (2005) Random effect models for repeated measures of zero-inflated count data. Statistical Modelling, 5, 1-19.
    • (2005) Statistical Modelling , vol.5 , pp. 1-19
    • Min, Y.1    Agresti, A.2
  • 37
    • 0000854272 scopus 로고
    • Specification and testing of some modified count data models
    • Mullahy J (1986) Specification and testing of some modified count data models. Journal of Econometrics, 33, 341-65.
    • (1986) Journal of Econometrics , vol.33 , pp. 341-365
    • Mullahy, J.1
  • 38
    • 0009852669 scopus 로고    scopus 로고
    • General growth mixture modeling for randomized preventive interventions
    • Muthén B, Brown CH, Booil Jo KM, Khoo ST,et al.(2002) General growth mixture modeling for randomized preventive interventions. Biostatistics, 3, 459-75.
    • (2002) Biostatistics , vol.3 , pp. 459-475
    • Muthén, B.1    Brown, C.H.2    Booil, J.K.M.3    Khoo, S.T.4
  • 40
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team (2007) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.
    • (2007) R: A Language and Environment for Statistical Computing
  • 41
    • 0001854290 scopus 로고    scopus 로고
    • Models for count data with many zeros
    • Proceedings from the International Biometric Conference, Cape Town,December 1998
    • Ridout M, Demétrio CGB and Hinde J (1998) Models for count data with many zeros. Proceedings from the International Biometric Conference, Cape Town, December 1998.
    • (1998)
    • Ridout, M.1    Demétrio, C.G.B.2    Hinde, J.3
  • 45
    • 0036319014 scopus 로고    scopus 로고
    • Service systems integration and outcomes for mentally ill homeless persons in the ACCESS program
    • Rosenheck RA, Lam JA, Morrissey JP, Calloway MO,et al.(2002) Service systems integration and outcomes for mentally ill homeless persons in the ACCESS program. Psychiatric Services, 53, 958-66.
    • (2002) Psychiatric Services , vol.53 , pp. 958-966
    • Rosenheck, R.A.1    Lam, J.A.2    Morrissey, J.P.3    Calloway, M.O.4
  • 46
    • 0003174553 scopus 로고
    • Bayesian statistics without tears: a sampling-resampling perspective
    • Smith AFM and Gelfand AE (1992) Bayesian statistics without tears: a sampling-resampling perspective. American Statistician, 46, 84-88.
    • (1992) American Statistician , vol.46 , pp. 84-88
    • Smith, A.F.M.1    Gelfand, A.E.2
  • 47
    • 37349019755 scopus 로고    scopus 로고
    • Boa: an R package for MCMC output convergence assessment and posterior inference
    • Smith BJ (2007) Boa: an R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21, 1-37.
    • (2007) Journal of Statistical Software , vol.21 , pp. 1-37
    • Smith, B.J.1
  • 48
    • 0041173474 scopus 로고    scopus 로고
    • Bayesian graphical modelling: a case study in monitoring health outcomes
    • Spiegelhalter DJ (1998) Bayesian graphical modelling: a case study in monitoring health outcomes. Applied Statistics, 47, 115-33.
    • (1998) Applied Statistics , vol.47 , pp. 115-133
    • Spiegelhalter, D.J.1
  • 52
    • 0035888098 scopus 로고    scopus 로고
    • Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention programme
    • Yau KK and Lee AH (2001) Zero-inflated Poisson regression with random effects to evaluate an occupational injury prevention programme. Statistics in Medicine, 20, 2907-20.
    • (2001) Statistics in Medicine , vol.20 , pp. 2907-2920
    • Yau, K.K.1    Lee, A.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.