-
1
-
-
0031643577
-
Approximation schemes for Euclidean k-medians and related problems
-
Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for Euclidean k-medians and related problems. In STOC, 1998.
-
(1998)
STOC
-
-
Arora, S.1
Raghavan, P.2
Rao, S.3
-
2
-
-
0034819501
-
Local search heuristic for k-median and facility location problems
-
Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit. Local search heuristic for k-median and facility location problems. In STOC, 2001.
-
(2001)
STOC
-
-
Arya, V.1
Garg, N.2
Khandekar, R.3
Meyerson, A.4
Munagala, K.5
Pandit, V.6
-
3
-
-
0036036832
-
Approximate clustering via core-sets
-
Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-sets. In STOC, pages 250-257, 2002.
-
(2002)
STOC
, pp. 250-257
-
-
Badoiu, M.1
Har-Peled, S.2
Indyk, P.3
-
4
-
-
70349129917
-
Approximate clustering without the approximation
-
Maria-Florina Balcan, Avrim Blum, and Anupam Gupta. Approximate clustering without the approximation. In SODA, 2009.
-
(2009)
SODA
-
-
Balcan, M.-F.1
Blum, A.2
Gupta, A.3
-
5
-
-
84898063953
-
Finding low error clusterings
-
Maria-Florina Balcan and Mark Braverman. Finding low error clusterings. In COLT, 2009.
-
(2009)
COLT
-
-
Balcan, M.-F.1
Braverman, M.2
-
6
-
-
77952057523
-
Agnostic clustering
-
Maria-Florina Balcan, Heiko Röglin, and Shang-Hua Teng. Agnostic clustering. In ALT, pages 384-398, 2009.
-
(2009)
ALT
, pp. 384-398
-
-
Balcan, M.-F.1
Röglin, H.2
Teng, S.-H.3
-
7
-
-
0032630441
-
A constant-factor approximation algorithm for the k-median problem
-
Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor approximation algorithm for the k-median problem. In STOC, 1999.
-
(1999)
STOC
-
-
Charikar, M.1
Guha, S.2
Tardos, É.3
Shmoys, D.B.4
-
8
-
-
62249180094
-
-
Technical report, University of California at San Diego
-
Sanjoy Dasgupta. The hardness of k-means clustering. Technical report, University of California at San Diego, 2008.
-
(2008)
The Hardness of K-means Clustering
-
-
Dasgupta, S.1
-
10
-
-
84860180315
-
Deterministic clustering with data nets
-
Michelle Effros and Leonard J. Schulman. Deterministic clustering with data nets. ECCC, (050), 2004.
-
(2004)
ECCC
, vol.50
-
-
Effros, M.1
Schulman, L.J.2
-
11
-
-
0032280078
-
Greedy strikes back: Improved facility location algorithms
-
Sudipto Guha and Samir Khuller. Greedy strikes back: Improved facility location algorithms. In Journal of Algorithms, pages 649-657, 1998.
-
(1998)
Journal of Algorithms
, pp. 649-657
-
-
Guha, S.1
Khuller, S.2
-
12
-
-
4544303932
-
On coresets for k-means and k-median clustering
-
Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In STOC, pages 291-300, 2004.
-
(2004)
STOC
, pp. 291-300
-
-
Har-Peled, S.1
Mazumdar, S.2
-
13
-
-
0027928863
-
Applications of weighted voronoi diagrams and randomization to variance-based k-clustering
-
extended abstract
-
Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and randomization to variance-based k-clustering: (extended abstract). In Proc. 10th Symp. Comp. Geom., pages 332-339, 1994.
-
(1994)
Proc. 10th Symp. Comp. Geom.
, pp. 332-339
-
-
Inaba, M.1
Katoh, N.2
Imai, H.3
-
14
-
-
0036041233
-
A new greedy approach for facility location problems
-
extended abstract
-
Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility location problems (extended abstract). In STOC, pages 731-740, 2002.
-
(2002)
STOC
, pp. 731-740
-
-
Jain, K.1
Mahdian, M.2
Saberi, A.3
-
15
-
-
0036361823
-
A local search approximation algorithm for k-means clustering
-
Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman, and Angela Y. Wu. A local search approximation algorithm for k-means clustering. In Proc. 18th Symp. Comp. Geom., 2002.
-
Proc. 18th Symp. Comp. Geom., 2002
-
-
Kanungo, T.1
Mount, D.M.2
Netanyahu, N.S.3
Piatko, C.D.4
Silverman, R.5
Wu, A.Y.6
-
16
-
-
11244288693
-
A simple linear time (1+ ∈)-approximation algorithm for k-means clustering in any dimensions
-
Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A simple linear time (1+ ∈)-approximation algorithm for k-means clustering in any dimensions. In FOCS, 2004.
-
(2004)
FOCS
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
17
-
-
0034510681
-
Polynomial time approximation schemes for geometric k-clustering
-
R. Ostrovsky and Y. Rabani. Polynomial time approximation schemes for geometric k-clustering. In FOCS, 2000.
-
(2000)
FOCS
-
-
Ostrovsky, R.1
Rabani, Y.2
-
18
-
-
35348899361
-
The effectiveness of Lloyd-type methods for the k-means problem
-
Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. The effectiveness of Lloyd-type methods for the k-means problem. In FOCS, pages 165-176, 2006.
-
(2006)
FOCS
, pp. 165-176
-
-
Ostrovsky, R.1
Rabani, Y.2
Schulman, L.J.3
Swamy, C.4
-
20
-
-
80053155098
-
Efficient clustering with limited distance information
-
Konstantin Voevodski, Maria Florina Balcan, Heiko Roglin, ShangHua Teng, and Yu Xia. Efficient clustering with limited distance information. In Proc. 26th UAI, 2010.
-
Proc. 26th UAI, 2010
-
-
Voevodski, K.1
Balcan, M.F.2
Roglin, H.3
Teng, S.4
Xia, Y.5
|