-
2
-
-
84898064830
-
Which data sets are clusterable? - A theoretical study of clusterability
-
M. Ackerman and S. Ben-David. Which data sets are clusterable? - a theoretical study of clusterability. In NIPS, 2008.
-
(2008)
NIPS
-
-
Ackerman, M.1
Ben-David, S.2
-
5
-
-
84898068808
-
Learning mixtures of arbitrary Gaussians
-
S. Arora and R. Kannan. Learning mixtures of arbitrary gaussians. In STOC, 2005.
-
(2005)
STOC
-
-
Arora, S.1
Kannan, R.2
-
6
-
-
3142776554
-
Local search heuristics for k-median and facility location problems
-
V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics for k-median and facility location problems. SIAMJ. Comput., 33(3), 2004.
-
(2004)
SIAMJ. Comput.
, vol.33
, Issue.3
-
-
Arya, V.1
Garg, N.2
Khandekar, R.3
Meyerson, A.4
Munagala, K.5
Pandit, V.6
-
8
-
-
57049163657
-
A discrimantive framework for clustering via similarity functions
-
M.-F. Balcan, A. Blum, and S. Vempala. A discrimantive framework for clustering via similarity functions. In STOC, 2008.
-
(2008)
STOC
-
-
Balcan, M.-F.1
Blum, A.2
Vempala, S.3
-
10
-
-
33847677259
-
A framework for statistical clustering with constant time approximation for k-median and k-means clustering
-
S. Ben-David. A framework for statistical clustering with constant time approximation for k-median and k-means clustering. Machine Learning, 66(2-3), 2007.
-
(2007)
Machine Learning
, vol.66
, Issue.2-3
-
-
Ben-David, S.1
-
12
-
-
0032630441
-
A constant-factor approximation algorithm for the k-median problem
-
M. Charikar, S. Guha, E. Tardos, and D. B. Shmoy. A constant-factor approximation algorithm for the k-median problem. In STOC, 1999.
-
(1999)
STOC
-
-
Charikar, M.1
Guha, S.2
Tardos, E.3
Shmoy, D.B.4
-
20
-
-
0032674516
-
Sublinear time algorithms for metric space problems
-
P. Indyk. Sublinear time algorithms for metric space problems. In STOC, 1999.
-
(1999)
STOC
-
-
Indyk, P.1
-
21
-
-
0036041233
-
A new greedy approach for facility location problems
-
K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. In 34th STOC, 2002.
-
(2002)
34th STOC
-
-
Jain, K.1
Mahdian, M.2
Saberi, A.3
-
24
-
-
85156277066
-
An impossibility theorem for clustering
-
J. Kleinberg. An impossibility theorem for clustering. In NIPS, 2002.
-
(2002)
NIPS
-
-
Kleinberg, J.1
-
25
-
-
11244288693
-
A simple linear time (1 + ∈)-approximation algorithm for k-means clustering in any dimensions
-
A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1 + ∈)-approximation algorithm for k-means clustering in any dimensions. In 45th FOCS, 2004.
-
(2004)
45th FOCS
-
-
Kumar, A.1
Sabharwal, Y.2
Sen, S.3
-
26
-
-
10044298988
-
Comparing clusterings by the variation of information
-
M. Meila. Comparing clusterings by the variation of information. In COLT, 2003.
-
(2003)
COLT
-
-
Meila, M.1
-
29
-
-
3042606899
-
A spectral algorithm for learning mixture models
-
S. Vempala and G. Wang. A spectral algorithm for learning mixture models. JCSS, 68(2): 841-860, 2004.
-
(2004)
JCSS
, vol.68
, Issue.2
, pp. 841-860
-
-
Vempala, S.1
Wang, G.2
|