메뉴 건너뛰기




Volumn 35, Issue 2, 2011, Pages 111-118

Mining gold dust under the genome wide significance level: A two-stage approach to analysis of GWAS

Author keywords

Association; FDR; LASSO; Multi marker; Power

Indexed keywords

ARTICLE; ATHEROSCLEROSIS; FALSE NEGATIVE RESULT; FALSE POSITIVE RESULT; GENETIC ASSOCIATION; LINKAGE ANALYSIS; REGRESSION ANALYSIS; SIMULATION; SINGLE NUCLEOTIDE POLYMORPHISM; SYSTOLIC BLOOD PRESSURE;

EID: 78751507648     PISSN: 07410395     EISSN: 10982272     Source Type: Journal    
DOI: 10.1002/gepi.20556     Document Type: Article
Times cited : (39)

References (54)
  • 4
    • 0037079576 scopus 로고    scopus 로고
    • The elastic norithm and protein structure prediction
    • Ball KD, Erman B, Dill KA. 2002. The elastic net algorithm and protein structure prediction. J Comput Chem 23:77-83.
    • (2002) J Comput Chem , vol.23 , pp. 77-83
    • Ball, K.D.1    Erman, B.2    Dill, K.A.3
  • 5
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289-300.
    • (1995) J R Stat Soc Ser B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 6
    • 0034370950 scopus 로고    scopus 로고
    • On the adaptive control of the false discovery rate in multiple testing with independent statistics
    • Benjamini Y, Hochberg Y. 2000. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25:60-83.
    • (2000) J Educ Behav Stat , vol.25 , pp. 60-83
    • Benjamini, Y.1    Hochberg, Y.2
  • 7
    • 0033472708 scopus 로고    scopus 로고
    • A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence
    • Benjamini Y, Liu W. 1999. A step-down multiple hypotheses testing procedure that controls the false discovery rate under independence. J Stat Plan Infer 82:163-170.
    • (1999) J Stat Plan Infer , vol.82 , pp. 163-170
    • Benjamini, Y.1    Liu, W.2
  • 8
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165-1188.
    • (2001) Ann Stat , vol.29 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 9
    • 27544473473 scopus 로고    scopus 로고
    • Quantitative trait loci analysis using the false discovery rate
    • Benjamini Y, Yekutieli D. 2005. Quantitative trait loci analysis using the false discovery rate. Genetics 171:783-790.
    • (2005) Genetics , vol.171 , pp. 783-790
    • Benjamini, Y.1    Yekutieli, D.2
  • 11
    • 71249123715 scopus 로고    scopus 로고
    • Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis
    • Cho S, Kim H, Oh S, Kim K, Park T. 2009. Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis. BMC Proc 3:S25.
    • (2009) BMC Proc , vol.3
    • Cho, S.1    Kim, H.2    Oh, S.3    Kim, K.4    Park, T.5
  • 12
    • 0037317663 scopus 로고    scopus 로고
    • Antihypertensive treatments obscure familial contributions to blood pressure variation
    • Cui JS, Hopper JL, Harrap SB. 2003. Antihypertensive treatments obscure familial contributions to blood pressure variation. Hypertension 41:207-210.
    • (2003) Hypertension , vol.41 , pp. 207-210
    • Cui, J.S.1    Hopper, J.L.2    Harrap, S.B.3
  • 13
    • 71249128141 scopus 로고    scopus 로고
    • Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies
    • D'Angelo GM, Rao DC, Gu CC. 2009. Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies. BMC Proc 3:S62.
    • (2009) BMC Proc , vol.3
    • D'Angelo, G.M.1    Rao, D.C.2    Gu, C.C.3
  • 15
    • 78751543141 scopus 로고    scopus 로고
    • QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. Available from:
    • Gauderman WJ, Morrison JM. 2006. QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. Available from:
    • (2006)
    • Gauderman, W.J.1    Morrison, J.M.2
  • 16
    • 34548493072 scopus 로고    scopus 로고
    • Control of the mean number of false discoveries, Bonferroni and stability of multiple testing
    • Gordon A, Glazko G, Qiu X, Yakovlev A. 2007. Control of the mean number of false discoveries, Bonferroni and stability of multiple testing. Ann Appl Stat 1:179-190.
    • (2007) Ann Appl Stat , vol.1 , pp. 179-190
    • Gordon, A.1    Glazko, G.2    Qiu, X.3    Yakovlev, A.4
  • 18
    • 70449405755 scopus 로고    scopus 로고
    • [Least angle regression]: discussion
    • Ishwaran H. 2004. [Least angle regression]: discussion. Ann Stat 32:452-458.
    • (2004) Ann Stat , vol.32 , pp. 452-458
    • Ishwaran, H.1
  • 21
    • 71249142067 scopus 로고    scopus 로고
    • The Genetic Analysis Workshop 16 Problem 3: simulation of heritable longitudinal cardiovascular phenotypes based on actual genome-wide single-nucleotide polymorphisms in the Framingham Heart Study
    • Kraja AT, Culverhouse R, Daw EW, Wu J, Van Brunt A, Province MA, Borecki IB. 2009. The Genetic Analysis Workshop 16 Problem 3: simulation of heritable longitudinal cardiovascular phenotypes based on actual genome-wide single-nucleotide polymorphisms in the Framingham Heart Study. BMC Proc 3:S4.
    • (2009) BMC Proc , vol.3
    • Kraja, A.T.1    Culverhouse, R.2    Daw, E.W.3    Wu, J.4    Van Brunt, A.5    Province, M.A.6    Borecki, I.B.7
  • 23
    • 37549064336 scopus 로고    scopus 로고
    • Mach 1: rapid haplotype reconstruction and missing genotype inference
    • Li Y, Ding J, Abecasis GR. 2006. Mach 1: rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet S79:2290.
    • (2006) Am J Hum Genet , vol.79 , pp. 2290
    • Li, Y.1    Ding, J.2    Abecasis, G.R.3
  • 24
    • 84915425007 scopus 로고
    • Some comments on cp
    • Mallows CL. 1973. Some comments on cp. Technometrics 15:661-675.
    • (1973) Technometrics , vol.15 , pp. 661-675
    • Mallows, C.L.1
  • 25
    • 40749150099 scopus 로고    scopus 로고
    • Accommodating linkage disequilibrium in genetic-association analyses via ridge regression
    • Malo N, Libiger O, Schork NJ. 2008. Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. Am J Hum Genet 82:375-385.
    • (2008) Am J Hum Genet , vol.82 , pp. 375-385
    • Malo, N.1    Libiger, O.2    Schork, N.J.3
  • 26
    • 65849293723 scopus 로고    scopus 로고
    • Impaired performance of FDR-based strategies in whole-genome association studies when SNPs are excluded prior to the analysis
    • Marenne G, Dalmasso C, Perdry H, Génin E, Broët P. 2009. Impaired performance of FDR-based strategies in whole-genome association studies when SNPs are excluded prior to the analysis. Genet Epidemiol 33:45-53.
    • (2009) Genet Epidemiol , vol.33 , pp. 45-53
    • Marenne, G.1    Dalmasso, C.2    Perdry, H.3    Génin, E.4    Broët, P.5
  • 28
    • 43249125992 scopus 로고    scopus 로고
    • Estimation of the multiple testing burden for genomewide association studies of nearly all common variants
    • Pe'er I, Yelensky R, Altshuler D, Daly MJ. 2008. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol 32:381-385.
    • (2008) Genet Epidemiol , vol.32 , pp. 381-385
    • Pe'er, I.1    Yelensky, R.2    Altshuler, D.3    Daly, M.J.4
  • 30
    • 40549124650 scopus 로고    scopus 로고
    • Gathering the gold dust: methods for assessing the aggregate impact of small effect genes in genomic scans
    • Province MA, Borecki IB. 2008. Gathering the gold dust: methods for assessing the aggregate impact of small effect genes in genomic scans. Pac Symp Biocomput 13:190-200.
    • (2008) Pac Symp Biocomput , vol.13 , pp. 190-200
    • Province, M.A.1    Borecki, I.B.2
  • 32
    • 35748932852 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing
    • R Development Core Team. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
    • R Development Core Team. 2007. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
    • (2007)
  • 34
    • 0037433040 scopus 로고    scopus 로고
    • Identifying differentially expressed genes using false discovery rate controlling procedures
    • Reiner A, Yekutieli D, Benjamini Y. 2003. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19:368-375.
    • (2003) Bioinformatics , vol.19 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 35
    • 0036101887 scopus 로고    scopus 로고
    • Some results on false discovery rate in stepwise multiple testing procedures
    • Sarkar SK. 2002. Some results on false discovery rate in stepwise multiple testing procedures. Ann Stat 30:239-257.
    • (2002) Ann Stat , vol.30 , pp. 239-257
    • Sarkar, S.K.1
  • 37
    • 38049013701 scopus 로고    scopus 로고
    • Detecting disease-causing genes by LASSO-pattern search algorithm
    • Shi W, Lee KE, Wahba G. 2007. Detecting disease-causing genes by LASSO-pattern search algorithm. BMC Proc 1:S60.
    • (2007) BMC Proc , vol.1
    • Shi, W.1    Lee, K.E.2    Wahba, G.3
  • 38
    • 71249140395 scopus 로고    scopus 로고
    • Application of three-level linear mixed-effects models incorporating gene-age interactions for association analysis of longitudinal family data
    • Shi G, Rice T, Gu CC, Rao DC. 2009. Application of three-level linear mixed-effects models incorporating gene-age interactions for association analysis of longitudinal family data. BMC Proc 3:S89.
    • (2009) BMC Proc , vol.3
    • Shi, G.1    Rice, T.2    Gu, C.C.3    Rao, D.C.4
  • 39
    • 84857409169 scopus 로고    scopus 로고
    • [Least angle regression]: discussion
    • Stine RA. 2004. [Least angle regression]: discussion. Ann Stat 32:475-481.
    • (2004) Ann Stat , vol.32 , pp. 475-481
    • Stine, R.A.1
  • 40
    • 0036020892 scopus 로고    scopus 로고
    • A direct approach to false discovery rates
    • Storey JD. 2002. A direct approach to false discovery rates. J R Stat Soc B 64:479-498.
    • (2002) J R Stat Soc B , vol.64 , pp. 479-498
    • Storey, J.D.1
  • 41
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: a Bayesian interpretation and the q-value
    • Storey JD. 2003. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 31:2013-2035.
    • (2003) Ann Stat , vol.31 , pp. 2013-2035
    • Storey, J.D.1
  • 42
    • 0042424602 scopus 로고    scopus 로고
    • Statistical significance for genome-wide studies
    • Storey JD, Tibshirani R. 2003. Statistical significance for genome-wide studies. Proc Nat Acad Sci USA 100:9440-9445.
    • (2003) Proc Nat Acad Sci USA , vol.100 , pp. 9440-9445
    • Storey, J.D.1    Tibshirani, R.2
  • 43
    • 1142273091 scopus 로고    scopus 로고
    • Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach
    • Storey JD, Taylor JE, Siegmund D. 2004. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc Ser B 66:187-205.
    • (2004) J R Stat Soc Ser B , vol.66 , pp. 187-205
    • Storey, J.D.1    Taylor, J.E.2    Siegmund, D.3
  • 44
    • 71249097517 scopus 로고    scopus 로고
    • Identification of correlated genetic variants jointly associated with rheumatoid arthritis using ridge regression
    • Sun YV, Shedden KA, Zhu J, Choi NH, Kardia SL. 2009. Identification of correlated genetic variants jointly associated with rheumatoid arthritis using ridge regression. BMC Proc 3:S67.
    • (2009) BMC Proc , vol.3
    • Sun, Y.V.1    Shedden, K.A.2    Zhu, J.3    Choi, N.H.4    Kardia, S.L.5
  • 45
    • 71249093576 scopus 로고    scopus 로고
    • Comparison between single-marker analysis using Merlin and multi-marker analysis using LASSO for Framingham simulated data
    • Sung YJ, Rice TK, Shi G, Gu CC, Rao DC. 2009. Comparison between single-marker analysis using Merlin and multi-marker analysis using LASSO for Framingham simulated data. BMC Proc 3:S27.
    • (2009) BMC Proc , vol.3
    • Sung, Y.J.1    Rice, T.K.2    Shi, G.3    Gu, C.C.4    Rao, D.C.5
  • 48
    • 0024591825 scopus 로고
    • The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives
    • The ARIC investigators
    • The ARIC investigators. 1989. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am J Epidemiol 129:687-702.
    • (1989) Am J Epidemiol , vol.129 , pp. 687-702
  • 49
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. 1996. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267-288.
    • (1996) J R Stat Soc Ser B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 50
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci USA 98:5116-5121.
    • (2001) Proc Nat Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 51
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • Wu TT, Chen YF, Hastie T, Sobel E, Lange K. 2009. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25:714-721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.4    Lange, K.5
  • 52
    • 0033472709 scopus 로고    scopus 로고
    • Resampling based false discovery rate controlling procedure for dependent test statistics
    • Yekutieli D, Benjamini Y. 1999. Resampling based false discovery rate controlling procedure for dependent test statistics. J Stat Plan Infer 82:171-196.
    • (1999) J Stat Plan Infer , vol.82 , pp. 171-196
    • Yekutieli, D.1    Benjamini, Y.2
  • 54
    • 34547684291 scopus 로고    scopus 로고
    • A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance
    • Zhang S. 2007. A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance. BMC Bioinformatics 8:230.
    • (2007) BMC Bioinformatics , vol.8 , pp. 230
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.