메뉴 건너뛰기




Volumn 5, Issue 3, 2010, Pages 253-266

Wave simulation and forecasting using wind time history and data-driven methods

Author keywords

Genetic programming; Model trees; Wave forecasting; Wave simulation; Wind time history

Indexed keywords

BUOY MEASUREMENTS; DATA-DRIVEN METHODS; DEVELOPED MODEL; EAST COAST; MODEL TREES; OFFSHORE LOCATIONS; REAL TIME; SCATTER DIAGRAMS; SIGNIFICANT WAVE HEIGHT; TESTING SETS; TIME HISTORY; TIME SERIES FORECASTING; WAVE FORECASTING; WAVE PERIOD; WAVE SIMULATION; WAVE SIMULATIONS; WIND DIRECTIONS; WIND SPEED;

EID: 78651585866     PISSN: 17445302     EISSN: None     Source Type: Journal    
DOI: 10.1080/17445300903439223     Document Type: Article
Times cited : (11)

References (60)
  • 1
    • 0036132356 scopus 로고    scopus 로고
    • Online wave prediction
    • Agrawal JD, Deo MC. 2002. Online wave prediction. Mar Struct. 15(1):57-74.
    • (2002) Mar Struct , vol.15 , Issue.1 , pp. 57-74
    • Agrawal, J.D.1    Deo, M.C.2
  • 2
    • 46749112182 scopus 로고    scopus 로고
    • Adaptive estimation of wave parameters by Geno-Kalman filtering
    • Altunkaynak A. 2007. Adaptive estimation of wave parameters by Geno-Kalman filtering. Ocean Eng. 35(11-12):1245-1251.
    • (2007) Ocean Eng , vol.35 , Issue.12 , pp. 1245-1251
    • Altunkaynak, A.1
  • 3
    • 34147159408 scopus 로고    scopus 로고
    • Predicting significant wave height of theNortheast coast of theUnited States
    • Andreas EL, Wang S. 2007. Predicting significant wave height of theNortheast coast of theUnited States. Ocean Eng. 34:1328-1335.
    • (2007) Ocean Eng , vol.34 , pp. 1328-1335
    • Andreas, E.L.1    Wang, S.2
  • 6
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modeling water level-discharge relationship
    • Bhattacharya B, Solomatine DP. 2005. Neural networks and M5 model trees in modeling water level-discharge relationship. Neurocomputing. 63:381-396.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 7
    • 33645967437 scopus 로고    scopus 로고
    • Machine learning in sedimentation modeling
    • Bhattacharya B, Solomatine DP. 2006. Machine learning in sedimentation modeling. J Neural Netw. 19(2006):208-214.
    • (2006) J Neural Netw , vol.19 , pp. 208-214
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 9
    • 0027009595 scopus 로고
    • Shore protection manual's wave prediction (reviewed)
    • Bishop CT, Donelan MA, Kahma KK. 1992. Shore protection manual's wave prediction (reviewed). Coast Eng. 17:25-48.
    • (1992) Coast Eng , vol.17 , pp. 25-48
    • Bishop, C.T.1    Donelan, M.A.2    Kahma, K.K.3
  • 11
    • 34247282207 scopus 로고    scopus 로고
    • Nearshore swell estimation from a global wind-wave model spectral process, linear and artificial neural network models
    • Browne M, Castelle B, Strauss D, Tomilnson R, Blumenstein M, Lane C. 2007. Nearshore swell estimation from a global wind-wave model spectral process, linear and artificial neural network models. Coast Eng. 54:445-460.
    • (2007) Coast Eng , vol.54 , pp. 445-460
    • Browne, M.1    Castelle, B.2    Strauss, D.3    Tomilnson, R.4    Blumenstein, M.5    Lane, C.6
  • 13
    • 55349092627 scopus 로고    scopus 로고
    • Inverse modeling to derive wind parameters from wave measurements
    • Charhate SB, Deo MC, Londhe SN. 2008. Inverse modeling to derive wind parameters from wave measurements. Appl Ocean Res.30:120-129.
    • (2008) Appl Ocean Res , vol.30 , pp. 120-129
    • Charhate, S.B.1    Deo, M.C.2    Londhe, S.N.3
  • 14
    • 77949664611 scopus 로고    scopus 로고
    • Genetic programming for real-time prediction of offshore wind
    • 1754-212X
    • Charhate SB, Deo MC, Londhe SN. 2009. Genetic programming for real-time prediction of offshore wind. Ships Offshore Struct. 1754-212X. 4(1):77-88.
    • (2009) Ships Offshore Struct , vol.4 , Issue.1 , pp. 77-88
    • Charhate, S.B.1    Deo, M.C.2    Londhe, S.N.3
  • 15
    • 37649004389 scopus 로고    scopus 로고
    • Soft and hard computing approaches for real time prediction of currents in a tide dominated area
    • Proceedings of the Institution of Mechanical Engineers; London, Part M
    • Charhate SB, Deo MC, Sanilkumar V. 2007. Soft and hard computing approaches for real time prediction of currents in a tide dominated area. J. Eng. Maritime Environ. Proceedings of the Institution of Mechanical Engineers; London, Part M, 221/2007, p. 147-163.
    • (2007) J. Eng. Maritime Environ , vol.221 , Issue.2007 , pp. 147-163
    • Charhate, S.B.1    Deo, M.C.2    Sanilkumar, V.3
  • 16
    • 78651536403 scopus 로고    scopus 로고
    • Coastal Engineering Manual, Engineer Manual; EM 1110-2-1100,Washington (DC): US Army Corps of Engineers
    • Coastal Engineering Manual. 2003. Meteorology and Wave Climate, Engineer Manual; EM 1110-2-1100,Washington (DC): US Army Corps of Engineers.
    • (2003) Meteorology and Wave Climate
  • 18
    • 40049111488 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation
    • de Vos NJ, Rientjes THM. 2005. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrol. Earth Syst. Sci. Discuss. 2:365-415. Available from: www.copernicus.org/EGU/hess/hessd/2/365.
    • (2005) Hydrol. Earth Syst. Sci. Discuss , vol.2 , pp. 365-415
    • de Vos, N.J.1    Rientjes, T.H.M.2
  • 21
    • 0002169269 scopus 로고
    • Proceedings of Canadian Coastal Conference, National Research Council of Canada. Burlington, Ontario: National Research Council
    • Donelan MA. 1980. Similarity theory applied to the forecasting of wave heights, periods and directions. Proceedings of Canadian Coastal Conference, National Research Council of Canada. Burlington, Ontario: National Research Council. p. 47-61.
    • (1980) Similarity Theory Applied to The Forecasting of Wave Heights, Periods and Directions , pp. 47-61
    • Donelan, M.A.1
  • 24
    • 46749107461 scopus 로고    scopus 로고
    • Real time wave forecasting using Genetic programming
    • Gaur S, Deo MC. 2008. Real time wave forecasting using Genetic programming. Ocean Eng.35:1166-1172.
    • (2008) Ocean Eng , vol.35 , pp. 1166-1172
    • Gaur, S.1    Deo, M.C.2
  • 25
    • 0037339949 scopus 로고    scopus 로고
    • Revisiting Wilson's formulas for simplified wind-wave prediction
    • Goda Y. 2003. Revisiting Wilson's formulas for simplified wind-wave prediction. ASCE J. Waterway Port Coast. Ocean Eng. 129(2):93-95.
    • (2003) ASCE J. Waterway Port Coast. Ocean Eng , vol.129 , Issue.2 , pp. 93-95
    • Goda, Y.1
  • 26
    • 51149105489 scopus 로고    scopus 로고
    • The estimation of monthly mean significant wave heights by using artificial neural network and regression methods
    • Gunaydin A. 2008. The estimation of monthly mean significant wave heights by using artificial neural network and regression methods. Ocean Eng. 35:1406-1415.
    • (2008) Ocean Eng , vol.35 , pp. 1406-1415
    • Gunaydin, A.1
  • 27
    • 32644437399 scopus 로고    scopus 로고
    • Wave height forecasting by the transfer function model
    • Ho PC, Yim JZ. 2006. Wave height forecasting by the transfer function model. Ocean Eng. 33:1230-1248.
    • (2006) Ocean Eng , vol.33 , pp. 1230-1248
    • Ho, P.C.1    Yim, J.Z.2
  • 28
    • 34748925008 scopus 로고    scopus 로고
    • Real time wave forecasts off western Indian coast
    • Jain P, Deo MC. 2007. Real time wave forecasts off western Indian coast. Appl Ocean Res. 29:72-79.
    • (2007) Appl Ocean Res , vol.29 , pp. 72-79
    • Jain, P.1    Deo, M.C.2
  • 29
    • 70349731388 scopus 로고    scopus 로고
    • Artificial intelligence tools to forecast ocean waves in real time
    • Jain P, Deo MC. 2008. Artificial intelligence tools to forecast ocean waves in real time. Open Ocean Eng. J. 1, 13-21.
    • (2008) Open Ocean Eng. J , vol.1 , pp. 13-21
    • Jain, P.1    Deo, M.C.2
  • 30
    • 39549086766 scopus 로고    scopus 로고
    • Progress in wave forecasting
    • Janssen P. 2008. Progress in wave forecasting. J. Comput. Phys. 227(7): 3572-3594.
    • (2008) J. Comput. Phys , vol.227 , Issue.7 , pp. 3572-3594
    • Janssen, P.1
  • 31
    • 39549110229 scopus 로고    scopus 로고
    • Genetic Programming to retrieve missing information in wave records along the west coast of India
    • Kalra R, Deo MC. 2008. Genetic Programming to retrieve missing information in wave records along the west coast of India. Appl. Ocean Res. 29(3):99-111.
    • (2008) Appl. Ocean Res , vol.29 , Issue.3 , pp. 99-111
    • Kalra, R.1    Deo, M.C.2
  • 32
    • 70349731386 scopus 로고    scopus 로고
    • Genetic programming to estimate coastal waves from deep water measurements
    • Kalra R, Deo MC, Kumar R, Agarwal VK. 2008. Genetic programming to estimate coastal waves from deep water measurements. Int. J. Ecol. Dev. 10(S08): 67-76.
    • (2008) Int. J. Ecol. Dev , vol.10 , Issue.S08 , pp. 67-76
    • Kalra, R.1    Deo, M.C.2    Kumar, R.3    Agarwal, V.K.4
  • 33
    • 33846353926 scopus 로고    scopus 로고
    • Ocean wave forecasting in the Gulf of Thailand during typhoon Linda 1997: WAM and neural network approaches, Science Asia. [J. Sci. Soc. Thailand]
    • Kanbua W, Supharatidb S, I-Ming T. 2005. Ocean wave forecasting in the Gulf of Thailand during typhoon Linda 1997: WAM and neural network approaches, Science Asia. [J. Sci. Soc. Thailand]. Science Asia Journal 31:243-250.
    • (2005) Science Asia Journal , vol.31 , pp. 243-250
    • Kanbua, W.1    Supharatidb, S.2    I-Ming, T.3
  • 35
    • 22144443524 scopus 로고    scopus 로고
    • Application of fuzzy inference system in the prediction of wave parameters
    • Kazeminezhad MH, Etemad-Shahidi A, Mousavi SJ. 2005. Application of fuzzy inference system in the prediction of wave parameters. Ocean Eng. 32:1709-1725.
    • (2005) Ocean Eng , vol.32 , pp. 1709-1725
    • Kazeminezhad, M.H.1    Etemad-Shahidi, A.2    Mousavi, S.J.3
  • 36
    • 2942734969 scopus 로고    scopus 로고
    • Nearshore wave prediction by coupling a wave model and statistical methods
    • Kobayashi T, Yasuda T. 2004. Nearshore wave prediction by coupling a wave model and statistical methods. Coastal Eng. 51:297-308.
    • (2004) Coastal Eng , vol.51 , pp. 297-308
    • Kobayashi, T.1    Yasuda, T.2
  • 39
    • 0036373412 scopus 로고    scopus 로고
    • A neural network technique to improve computational efficiency of numerical oceanic models
    • Krasnopolsky VM, Chalikov DV, Tolman HL. 2002. A neural network technique to improve computational efficiency of numerical oceanic models. Ocean Eng. 4(3-4):363-383.
    • (2002) Ocean Eng , vol.4 , Issue.4 , pp. 363-383
    • Krasnopolsky, V.M.1    Chalikov, D.V.2    Tolman, H.L.3
  • 40
    • 46749151701 scopus 로고    scopus 로고
    • Soft computing approach for real-time estimation of missing wave heights
    • Londhe SN. 2008. Soft computing approach for real-time estimation of missing wave heights. Ocean Eng. 35:1080-1089.
    • (2008) Ocean Eng , vol.35 , pp. 1080-1089
    • Londhe, S.N.1
  • 41
    • 50649091344 scopus 로고    scopus 로고
    • Hindcasting of wave parameters using different soft computing methods
    • Mahjoobi J, Shahidi E, Kazeminezhad MH. 2008. Hindcasting of wave parameters using different soft computing methods. J. Appl. Ocean Res. 30:28-36.
    • (2008) J. Appl. Ocean Res , vol.30 , pp. 28-36
    • Mahjoobi, J.1    Shahidi, E.2    Kazeminezhad, M.H.3
  • 42
    • 1842843640 scopus 로고    scopus 로고
    • Improving wave predictions with artificial neural networks
    • Makarynskyy O. 2004. Improving wave predictions with artificial neural networks. Ocean Eng. 31(5-6):709-724.
    • (2004) Ocean Eng , vol.31 , Issue.6 , pp. 709-724
    • Makarynskyy, O.1
  • 43
    • 34250759987 scopus 로고    scopus 로고
    • Wave prediction and data supplementation using artificial neural networks
    • Makarynskyy O, Makarynska D. 2006. Wave prediction and data supplementation using artificial neural networks. J. Coast. Res. 22:146-155.
    • (2006) J. Coast. Res , vol.22 , pp. 146-155
    • Makarynskyy, O.1    Makarynska, D.2
  • 45
    • 38849097226 scopus 로고    scopus 로고
    • Wave hind-casting by coupling numerical model and artificial neural networks
    • Malekmohamadi I, Ghiassi R, Yazdanpanah MJ. 2008.Wave hind-casting by coupling numerical model and artificial neural networks. Ocean Eng. 35(3-4):417-425.
    • (2008) Ocean Eng , vol.35 , Issue.4 , pp. 417-425
    • Malekmohamadi, I.1    Ghiassi, R.2    Yazdanpanah, M.J.3
  • 46
    • 10344226190 scopus 로고    scopus 로고
    • A superior exploration-exploitation balance in shuffled complex evolution
    • Muttil N, Liong SY. 2004. A superior exploration-exploitation balance in shuffled complex evolution. ASCE J. Hydraul. Eng. 30(12):1202-1205.
    • (2004) ASCE J. Hydraul. Eng , vol.30 , Issue.12 , pp. 1202-1205
    • Muttil, N.1    Liong, S.Y.2
  • 47
    • 0001495905 scopus 로고
    • Proceedings of Australian Joint Conference on AI. Singapore: World Scientific
    • Quinlan JR. 1992. Learning with continuous classes. Proceedings of Australian Joint Conference on AI. Singapore: World Scientific. p. 343-348.
    • (1992) Learning With Continuous Classes , pp. 343-348
    • Quinlan, J.R.1
  • 48
    • 67649660074 scopus 로고    scopus 로고
    • Derivation of wave spectrum using data driven methods
    • Sakhare S, Deo MC. 2009. Derivation of wave spectrum using data driven methods. Mar. Struct. 22(3): 594-609.
    • (2009) Mar. Struct , vol.22 , Issue.3 , pp. 594-609
    • Sakhare, S.1    Deo, M.C.2
  • 50
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural network in rainfall runoff modeling
    • Solomatine DP, Dulal KN. 2003. Model tree as an alternative to neural network in rainfall runoff modeling. Hydrol. Sci. J. 48(3):399-412.
    • (2003) Hydrol. Sci. J , vol.48 , Issue.3 , pp. 399-412
    • Solomatine, D.P.1    Dulal, K.N.2
  • 51
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees compared to neural networks, application of flood forecasting in the upper reach of the Huai River in China
    • Solomatine DP, Xue Y. 2004. M5 model trees compared to neural networks, application of flood forecasting in the upper reach of the Huai River in China. ASCE J. Hydrol. Eng. 9(6):491-501.
    • (2004) ASCE J. Hydrol. Eng , vol.9 , Issue.6 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 52
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson PA. 1999. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 4(3):232-239.
    • (1999) J. Hydrol. Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 53
    • 0034174397 scopus 로고    scopus 로고
    • Precipitation runoff modeling using artificial neural network and conceptual models
    • Tokar AS, Markus M. 2000. Precipitation runoff modeling using artificial neural network and conceptual models. ASCE J. Hydrol. Eng. 5(2):156-161.
    • (2000) ASCE J. Hydrol. Eng , vol.5 , Issue.2 , pp. 156-161
    • Tokar, A.S.1    Markus, M.2
  • 54
    • 42149162803 scopus 로고    scopus 로고
    • Filling up gaps in wave data with genetic programming
    • Ustoorikar K, Deo MC. 2008. Filling up gaps in wave data with genetic programming. Mar Struct. 21:177-195.
    • (2008) Mar Struct , vol.21 , pp. 177-195
    • Ustoorikar, K.1    Deo, M.C.2
  • 55
    • 84883491201 scopus 로고
    • The WAM model-a third generation wave prediction model
    • WAMDI Group
    • WAMDI Group. 1988. The WAM model-a third generation wave prediction model. J. Phys. Oceanogr. 18:1775-1810.
    • (1988) J. Phys. Oceanogr , vol.18 , pp. 1775-1810
  • 56
    • 0035105632 scopus 로고    scopus 로고
    • Modeling rainfall-runoff using genetic programming
    • Whigham PA, Crapper PF. 2001. Modeling rainfall-runoff using genetic programming. Math.Comput.Modeling. 33:707-721.
    • (2001) Math.Comput.Modeling , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 57
    • 0000511327 scopus 로고
    • Numerical prediction of ocean waves in the North Atlantic for December 1959
    • Wilson BW. 1965. Numerical prediction of ocean waves in the North Atlantic for December 1959. Deutsche Hydrogr. A. 18(3):113-130.
    • (1965) Deutsche Hydrogr. A , vol.18 , Issue.3 , pp. 113-130
    • Wilson, B.W.1
  • 60
    • 33745627084 scopus 로고    scopus 로고
    • An adjoint sensitivity technique for dynamic neural network modeling and design of high-speed interconnect
    • Zhang QJ, Cao Y, Xu JJ, Devabhaktuni VK, Ding RT. 2006. An adjoint sensitivity technique for dynamic neural network modeling and design of high-speed interconnect. Int. J. RFMicrow. CAE. 16(4):385-399.
    • (2006) Int. J. RFMicrow. CAE , vol.16 , Issue.4 , pp. 385-399
    • Zhang, Q.J.1    Cao, Y.2    Xu, J.J.3    Devabhaktuni, V.K.4    Ding, R.T.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.