메뉴 건너뛰기




Volumn 22, Issue 3, 2009, Pages 594-609

Derivation of wave spectrum using data driven methods

Author keywords

Model trees; Support vector regression; Wave measurements; Wave spectra

Indexed keywords

ALTERNATIVE APPROACH; BAY OF BENGAL , INDIA; CORRELATION COEFFICIENT; CURRENT TECHNIQUES; DATA BUOY; DATA-DRIVEN METHODS; DESIGN WAVE; GEOGRAPHICAL AREA; GULF OF MAINE; MODEL PERFORMANCE; MODEL TREES; OCEAN TECHNOLOGY; POTENTIAL APPLICATIONS; ROOT MEAN SQUARE ERRORS; SEA STATE; SIGNIFICANT WAVE HEIGHT; SPECTRAL SHAPES; SUPPORT VECTOR REGRESSION; SUPPORT VECTOR REGRESSIONS; WAVE FREQUENCIES; WAVE MEASUREMENTS; WAVE PARAMETERS; WAVE PERIOD; WAVE SPECTRA; WAVE SURFACE;

EID: 67649660074     PISSN: 09518339     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.marstruc.2008.12.004     Document Type: Article
Times cited : (23)

References (38)
  • 4
  • 7
    • 27444434905 scopus 로고    scopus 로고
    • Estimation of wave spectral shapes using ANN
    • Elsevier
    • Naithani, and Deo M.C. Estimation of wave spectral shapes using ANN. Advances in Engineering Software 36 (2005) 750-756 Elsevier
    • (2005) Advances in Engineering Software , vol.36 , pp. 750-756
    • Naithani1    Deo, M.C.2
  • 8
    • 33747376301 scopus 로고    scopus 로고
    • Application of artificial neural network model in estimation of wave spectra
    • ASCE
    • Namekar, and Deo M.C. Application of artificial neural network model in estimation of wave spectra. Journal of Waterways, Port, Coastal and Ocean Division 132 5 (2006) 1-4 ASCE
    • (2006) Journal of Waterways, Port, Coastal and Ocean Division , vol.132 , Issue.5 , pp. 1-4
    • Namekar1    Deo, M.C.2
  • 9
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • ASCE
    • Khan M.S., and Coulibay P. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering 11 3 (2006) 199-205 ASCE
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibay, P.2
  • 10
    • 0037565156 scopus 로고    scopus 로고
    • Model tree as an alternative to neural network in rainfall-runoff modelling
    • Solomatine D.P., and Dulal K.N. Model tree as an alternative to neural network in rainfall-runoff modelling. Hydrological Sciences Journal 48 3 (2003) 399-412
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 399-412
    • Solomatine, D.P.1    Dulal, K.N.2
  • 12
    • 67649667540 scopus 로고    scopus 로고
    • accessed 08.16.06
    • [accessed 08.16.06].
  • 15
    • 84860367580 scopus 로고    scopus 로고
    • Contaminant transport modeling with support vector machine model - an alternative to classical advection-dispersion equation
    • Liong (Ed), World Scientific p. 1589-96
    • Vojinovic Z., and Kecman V. Contaminant transport modeling with support vector machine model - an alternative to classical advection-dispersion equation. In: Liong (Ed). Proceedings of the 6th international conference on hydroinformatics (2004), World Scientific p. 1589-96
    • (2004) Proceedings of the 6th international conference on hydroinformatics
    • Vojinovic, Z.1    Kecman, V.2
  • 18
    • 13644256120 scopus 로고    scopus 로고
    • Support vector machines for classification in remote sensing
    • Pal M., and Mather P.M. Support vector machines for classification in remote sensing. International Journal of Remote Sensing 26 (2005) 1007-1011
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 1007-1011
    • Pal, M.1    Mather, P.M.2
  • 19
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machine based modeling of seismic liquefaction potential
    • Pal M. Support vector machine based modeling of seismic liquefaction potential. International Journal of Numerical Methods in Geomechanics 30 (2000) 983-996
    • (2000) International Journal of Numerical Methods in Geomechanics , vol.30 , pp. 983-996
    • Pal, M.1
  • 20
    • 28244500557 scopus 로고    scopus 로고
    • Prediction of the end-depth ratio and discharge in semi-circular and circular shaped channels using support vector machines
    • Pal M., and Goel A. Prediction of the end-depth ratio and discharge in semi-circular and circular shaped channels using support vector machines. Flow Measuring Instrumentation 17 1 (2006) 49-57
    • (2006) Flow Measuring Instrumentation , vol.17 , Issue.1 , pp. 49-57
    • Pal, M.1    Goel, A.2
  • 21
    • 39549084921 scopus 로고    scopus 로고
    • Estimation of removal efficiency for settling basins using neural networks and support vector machines
    • ASCE
    • Singh K.K., Pal M., Ojha C.S.P., and Singh V.P. Estimation of removal efficiency for settling basins using neural networks and support vector machines. Journal of Hydrologic Engineering 13 3 (2008) 146-154 ASCE
    • (2008) Journal of Hydrologic Engineering , vol.13 , Issue.3 , pp. 146-154
    • Singh, K.K.1    Pal, M.2    Ojha, C.S.P.3    Singh, V.P.4
  • 23
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine D.P., and Xue Y. M5 model trees compared to neural networks: application to flood forecasting in the upper reach of the Huai River in China. ASCE Journal of Hydrologic Engineering 9 4 (2004) 491-501
    • (2004) ASCE Journal of Hydrologic Engineering , vol.9 , Issue.4 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 25
    • 33645967437 scopus 로고    scopus 로고
    • Machine learning in sedimentation modeling
    • Bhattacharya B., and Solomatine D.P. Machine learning in sedimentation modeling. Neural Networks 19 (2006) 208-214
    • (2006) Neural Networks , vol.19 , pp. 208-214
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 26
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level-discharge relationship
    • Bhattacharya B., and Solomatine D.P. Neural networks and M5 model trees in modelling water level-discharge relationship. Neurocomputing 63 (2005) 381-396
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.P.2
  • 28
    • 39449115775 scopus 로고    scopus 로고
    • Flexible and optimal M5 model trees with applications to flow predictions
    • Liong, Phoon, and Babovic (Eds) p. 1719-26
    • Solomatine D.P., and Siek K. Flexible and optimal M5 model trees with applications to flow predictions. In: Liong, Phoon, and Babovic (Eds). 6th international conference on hydroinformatics (2004) p. 1719-26
    • (2004) 6th international conference on hydroinformatics
    • Solomatine, D.P.1    Siek, K.2
  • 29
    • 78649946496 scopus 로고    scopus 로고
    • Application of the M5 machine learning method for the development of the low flow forecasting model
    • HIC, Nice, France p. 863-78
    • Stravs L., and Brilly M. Application of the M5 machine learning method for the development of the low flow forecasting model. 7th international conference on hydroinformatics vol. 2 (2006), HIC, Nice, France p. 863-78
    • (2006) 7th international conference on hydroinformatics , vol.2
    • Stravs, L.1    Brilly, M.2
  • 30
    • 67649667535 scopus 로고    scopus 로고
    • Learning more about the rising limb of the flood waves by using machine learning method
    • HIC, Nice, France p. 879-85
    • Stravs L., and Brilly M. Learning more about the rising limb of the flood waves by using machine learning method. 7th international conference on hydroinformatics vol. 2 (2006), HIC, Nice, France p. 879-85
    • (2006) 7th international conference on hydroinformatics , vol.2
    • Stravs, L.1    Brilly, M.2
  • 31
    • 0014479535 scopus 로고
    • Experiments on generation of small water waves
    • Plate E.J., Change A., and Hidg. Experiments on generation of small water waves. Journal of Fluid Mechanics 35 4 (1967) 625-632
    • (1967) Journal of Fluid Mechanics , vol.35 , Issue.4 , pp. 625-632
    • Plate, E.J.1    Change, A.2    Hidg3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.