메뉴 건너뛰기




Volumn 221, Issue 4, 2007, Pages 147-165

Soft and hard computing approaches for real-time prediction of currents in a tide-dominated coastal area

Author keywords

Current measurements; Genetic programming; Harmonic analysis; Neural networks; Tidal currents

Indexed keywords

COASTAL ENGINEERING; GENETIC PROGRAMMING; HARMONIC ANALYSIS; HYDRODYNAMICS; NEURAL NETWORKS; TIDES; COASTAL ZONES; COMPLEX NETWORKS; ELECTRIC CURRENT MEASUREMENT; FORECASTING; GENETIC ALGORITHMS; HARMONIC FUNCTIONS; OCEAN CURRENTS; SOFT COMPUTING; STATISTICAL METHODS; STOCHASTIC SYSTEMS; TIME SERIES;

EID: 37649004389     PISSN: 14750902     EISSN: None     Source Type: Journal    
DOI: 10.1243/14750902JEME77     Document Type: Article
Times cited : (21)

References (44)
  • 1
    • 0018954693 scopus 로고
    • A three-dimensional model of the Bristol Channel
    • Owen, A. A three-dimensional model of the Bristol Channel. J. Phys. Oceanogr., 1980, 10, 1290-1302.
    • (1980) J. Phys. Oceanogr , vol.10 , pp. 1290-1302
    • Owen, A.1
  • 5
    • 0011287804 scopus 로고    scopus 로고
    • Tidal currents in the central Great Barrier Reef
    • Church, J. A., John, C. A., and Boland, F. M. Tidal currents in the central Great Barrier Reef. Continental Shelf Res., 1998, 4(5), 515-531.
    • (1998) Continental Shelf Res , vol.4 , Issue.5 , pp. 515-531
    • Church, J.A.1    John, C.A.2    Boland, F.M.3
  • 6
    • 0027009572 scopus 로고
    • Harmonic tidal current constituents of the Western Arabian Gulf from moored current measurements
    • John, V. Harmonic tidal current constituents of the Western Arabian Gulf from moored current measurements. Coastal Engng, 1992, 17, 145-151.
    • (1992) Coastal Engng , vol.17 , pp. 145-151
    • John, V.1
  • 7
    • 0028193912 scopus 로고
    • Long-term current prediction in the central Great Barrier Reef
    • Burrage, D. M., Black, I. P., and Ness, K. F. Long-term current prediction in the central Great Barrier Reef. Continental Shelf Res., 1994, 14(7-8), 803-809.
    • (1994) Continental Shelf Res , vol.14 , Issue.7-8 , pp. 803-809
    • Burrage, D.M.1    Black, I.P.2    Ness, K.F.3
  • 8
    • 0043210532 scopus 로고    scopus 로고
    • Nayak, R. K. and Shetye, S. R. Tides in the Gulf of Khambhat, west coast of India, estuarine. Coastal and Shelf Sci., 2003, 57, 249-254.
    • Nayak, R. K. and Shetye, S. R. Tides in the Gulf of Khambhat, west coast of India, estuarine. Coastal and Shelf Sci., 2003, 57, 249-254.
  • 9
    • 37649020546 scopus 로고    scopus 로고
    • Waves and currents in a tide dominated location off Dahej, Gulf of Khambhat, west coast of India
    • submitted for publication
    • Sanil Kumar, V. and Ashok Kumar, K. Waves and currents in a tide dominated location off Dahej, Gulf of Khambhat, west coast of India. J. Coastal Res., 2007 (submitted for publication).
    • (2007) J. Coastal Res
    • Sanil Kumar, V.1    Ashok Kumar, K.2
  • 10
    • 0344286516 scopus 로고    scopus 로고
    • Real time wave forecasting using neural networks
    • Deo, M. C. and Naidu, C. S. Real time wave forecasting using neural networks. Ocean Engng, 1999, 26(3), 191-203.
    • (1999) Ocean Engng , vol.26 , Issue.3 , pp. 191-203
    • Deo, M.C.1    Naidu, C.S.2
  • 11
    • 0037036332 scopus 로고    scopus 로고
    • Neural network for wave forecasting among multi-stations
    • Tsai, C., Lin, C., and Shert, J. Neural network for wave forecasting among multi-stations. Ocean Engng, 2002, 29(13), 1683-1695.
    • (2002) Ocean Engng , vol.29 , Issue.13 , pp. 1683-1695
    • Tsai, C.1    Lin, C.2    Shert, J.3
  • 12
    • 1842843640 scopus 로고    scopus 로고
    • Improving wave predictions with artificial neural networks
    • Makarynskyy, O. Improving wave predictions with artificial neural networks. Ocean Engng, 2004, 31, 709-724.
    • (2004) Ocean Engng , vol.31 , pp. 709-724
    • Makarynskyy, O.1
  • 13
    • 2642563544 scopus 로고    scopus 로고
    • Temporal significant wave height estimation from wind speed by perceptron Kalman filtering
    • Altunkaynak, A. and Ozger, M. Temporal significant wave height estimation from wind speed by perceptron Kalman filtering. Ocean Engng, 2004, 31(10), 1245-1255.
    • (2004) Ocean Engng , vol.31 , Issue.10 , pp. 1245-1255
    • Altunkaynak, A.1    Ozger, M.2
  • 14
    • 6444229603 scopus 로고    scopus 로고
    • Neural network approximations for nonlinear interactions in wind wave spectra: Direct mapping for wind seas in deep water
    • Tolman, H. L., Krasnopolsky, V. M., and Chalikov, D. V. Neural network approximations for nonlinear interactions in wind wave spectra: direct mapping for wind seas in deep water. Ocean Modeling, 2005, 8, 253-278.
    • (2005) Ocean Modeling , vol.8 , pp. 253-278
    • Tolman, H.L.1    Krasnopolsky, V.M.2    Chalikov, D.V.3
  • 17
    • 0344062921 scopus 로고    scopus 로고
    • Back-propagation neural network for long-term tidal predictions
    • Lee, T. L. Back-propagation neural network for long-term tidal predictions. Ocean Engng, 2004, 31(2), 225-238.
    • (2004) Ocean Engng , vol.31 , Issue.2 , pp. 225-238
    • Lee, T.L.1
  • 18
    • 0030778350 scopus 로고    scopus 로고
    • Predicting Caspian Sea surface water levels by ANN and ARIMA models
    • Vaziri, M. Predicting Caspian Sea surface water levels by ANN and ARIMA models. J. Waterway, Port, Coastal, Ocean Engng, 1997, 123(4), 158-162.
    • (1997) J. Waterway, Port, Coastal, Ocean Engng , vol.123 , Issue.4 , pp. 158-162
    • Vaziri, M.1
  • 19
    • 0036162861 scopus 로고    scopus 로고
    • Water level observations and short-term predictions including meteorological events for entrance of Galveston Bay, Texas
    • Cox, D. T., Tissot, P., and Michaud, P. Water level observations and short-term predictions including meteorological events for entrance of Galveston Bay, Texas. J. Waterway, Port, Coastal, Ocean Engng, 2002, 128(1), 21-29.
    • (2002) J. Waterway, Port, Coastal, Ocean Engng , vol.128 , Issue.1 , pp. 21-29
    • Cox, D.T.1    Tissot, P.2    Michaud, P.3
  • 20
    • 0037224608 scopus 로고    scopus 로고
    • Forecasting wind with neural networks
    • More, A. and Deo, M. C. Forecasting wind with neural networks. Mar. Structs, 2003, 16(1), 35-49.
    • (2003) Mar. Structs , vol.16 , Issue.1 , pp. 35-49
    • More, A.1    Deo, M.C.2
  • 21
    • 0037128648 scopus 로고    scopus 로고
    • Application of artificial neural networks in tide forecasting
    • Lee, T. L. and Jeng, D. S. Application of artificial neural networks in tide forecasting. Ocean Engng, 2002, 29(1), 1003-1022.
    • (2002) Ocean Engng , vol.29 , Issue.1 , pp. 1003-1022
    • Lee, T.L.1    Jeng, D.S.2
  • 22
    • 0029416123 scopus 로고
    • Prediction of estuarine instabilities with artificial neural networks
    • Grubert, J. P. Prediction of estuarine instabilities with artificial neural networks. J. Computing Civil Engng, 1995, 9(4), 226-274.
    • (1995) J. Computing Civil Engng , vol.9 , Issue.4 , pp. 226-274
    • Grubert, J.P.1
  • 23
    • 0035275946 scopus 로고    scopus 로고
    • Neural networks as routine for error updating of numerical models
    • Babovic, V., Kanizares, R., Jenson, H. R., and Klinting, A. Neural networks as routine for error updating of numerical models. J. Hydraul. Engng, 2001, 127(3), 181-193.
    • (2001) J. Hydraul. Engng , vol.127 , Issue.3 , pp. 181-193
    • Babovic, V.1    Kanizares, R.2    Jenson, H.R.3    Klinting, A.4
  • 24
    • 11844304934 scopus 로고    scopus 로고
    • Estimation of ocean, subsurface thermal structure from surface parmeters: A neural network approach
    • All, M. M., Swain, D., and Weiler, R. A. Estimation of ocean, subsurface thermal structure from surface parmeters: a neural network approach. Geophys. Res. Lett., 31, 2004, L20308.
    • (2004) Geophys. Res. Lett , vol.31
    • All, M.M.1    Swain, D.2    Weiler, R.A.3
  • 25
    • 0035301168 scopus 로고    scopus 로고
    • Utilizing artificial neural networks for predicting shoreline changes behind offshore break-waters
    • Refaat, H. A. Utilizing artificial neural networks for predicting shoreline changes behind offshore break-waters. J. Engng Appl. Sci., 2001, 48(2), 263-279.
    • (2001) J. Engng Appl. Sci , vol.48 , Issue.2 , pp. 263-279
    • Refaat, H.A.1
  • 26
    • 85009629937 scopus 로고    scopus 로고
    • Neural networks in ocean engineering
    • Jain, P. and Deo, M. C. Neural networks in ocean engineering. Int. J. Ships Offshore Structs, 2006, 1(1), 25-35.
    • (2006) Int. J. Ships Offshore Structs , vol.1 , Issue.1 , pp. 25-35
    • Jain, P.1    Deo, M.C.2
  • 27
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • The ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • The ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: preliminary concepts. J. Hydrologic Engng, 2000, 5(2), 115-123.
    • (2000) J. Hydrologic Engng , vol.5 , Issue.2 , pp. 115-123
  • 28
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II. Hydrologic applications
    • The ASCE Task Committee on Application Neural Networks in Hydrology
    • The ASCE Task Committee on Application Neural Networks in Hydrology, Artificial neural networks in hydrology. II. Hydrologic applications. J. Hydrologic Engng, 2000, 5(2), 124-137.
    • (2000) J. Hydrologic Engng , vol.5 , Issue.2 , pp. 124-137
  • 31
    • 0033726539 scopus 로고    scopus 로고
    • Genetic programming based approach for structural optimization
    • Soh, C. K. and Yang, Y. Genetic programming based approach for structural optimization. J. Computing in Civil Engng, 2000, 14(1), 31-37.
    • (2000) J. Computing in Civil Engng , vol.14 , Issue.1 , pp. 31-37
    • Soh, C.K.1    Yang, Y.2
  • 32
    • 0035105632 scopus 로고    scopus 로고
    • Modeling rainfall-runoff using genetic programming
    • Whigham, P. A. and Crapper, P. F. Modeling rainfall-runoff using genetic programming. Math. Computer Modeling, 2001, 33, 707-721.
    • (2001) Math. Computer Modeling , vol.33 , pp. 707-721
    • Whigham, P.A.1    Crapper, P.F.2
  • 34
    • 0037368538 scopus 로고    scopus 로고
    • Evolutionary self-organizing modeling of a municipal wastewater treatment plant
    • Hong, Y. S. and Rao, B. Evolutionary self-organizing modeling of a municipal wastewater treatment plant. Water Res., 2003, 37, 1199-1212.
    • (2003) Water Res , vol.37 , pp. 1199-1212
    • Hong, Y.S.1    Rao, B.2
  • 35
    • 0037362922 scopus 로고    scopus 로고
    • Empirical modeling of shear strength of RC deep beams by genetic programming
    • Ashour, A. F., Alvarez, L. F., and Toropov, V. V. Empirical modeling of shear strength of RC deep beams by genetic programming. Computers Structs Sci. Direct, 2003, 81, 331-338.
    • (2003) Computers Structs Sci. Direct , vol.81 , pp. 331-338
    • Ashour, A.F.1    Alvarez, L.F.2    Toropov, V.V.3
  • 36
    • 16444362411 scopus 로고    scopus 로고
    • Study of applying macro evolutionary genetic programming to concrete strength estimation
    • Li, C. Study of applying macro evolutionary genetic programming to concrete strength estimation. J. Computing Civil Engng, 2003, 17(4), 290-294.
    • (2003) J. Computing Civil Engng , vol.17 , Issue.4 , pp. 290-294
    • Li, C.1
  • 37
    • 16644389528 scopus 로고    scopus 로고
    • Two-stepped evolutionary algorithm and its application to stability analysis of slopes
    • Yang, C. X., Tham, L. G., Feng, X. T., Wang, Y. J., and Lee, P. K. K. Two-stepped evolutionary algorithm and its application to stability analysis of slopes. J. Computing Civil Engng, 2004, 18(2), 145-153.
    • (2004) J. Computing Civil Engng , vol.18 , Issue.2 , pp. 145-153
    • Yang, C.X.1    Tham, L.G.2    Feng, X.T.3    Wang, Y.J.4    Lee, P.K.K.5
  • 39
    • 31744432931 scopus 로고    scopus 로고
    • RBF neural network for spatial mapping of wave heights
    • Kalra, R., Deo, M. C., Kumar, R., and Agarwal, V. K. RBF neural network for spatial mapping of wave heights. Marine Structs, 2005, 18, 289-300.
    • (2005) Marine Structs , vol.18 , pp. 289-300
    • Kalra, R.1    Deo, M.C.2    Kumar, R.3    Agarwal, V.K.4
  • 43
    • 33845678066 scopus 로고    scopus 로고
    • One-day wave forecast based on artificial neural network
    • Londhe, S. and Panchang, V. One-day wave forecast based on artificial neural network. J. Atmospheric Oceanic Technol., 2006, 23(11), 593-1603.
    • (2006) J. Atmospheric Oceanic Technol , vol.23 , Issue.11 , pp. 593-1603
    • Londhe, S.1    Panchang, V.2
  • 44
    • 0036132356 scopus 로고    scopus 로고
    • Online wave prediction
    • Agrawal, J. D. and Deo, M. C. Online wave prediction. Marine Structs, 2002, 15(1), 57-74.
    • (2002) Marine Structs , vol.15 , Issue.1 , pp. 57-74
    • Agrawal, J.D.1    Deo, M.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.