메뉴 건너뛰기




Volumn 137, Issue 2, 2010, Pages 138-146

Support vector machines approach to HMA stiffness prediction

Author keywords

Artificial intelligence (AI); Asphalt; Construction materials; Dynamic modulus; Support vector machines (SVM)

Indexed keywords

AI TECHNIQUES; ARTIFICIAL NEURAL NETWORK; CONSTRUCTION MATERIALS; DATA POINTS; DEGREE OF COMPLEXITY; DYNAMIC MODULI; DYNAMIC MODULUS; HMA MIXTURES; HOT MIX ASPHALT; MECHANICAL BEHAVIOR; MULTIVARIATE REGRESSION; MULTIVARIATE REGRESSION ANALYSIS; PAVEMENT DESIGN; PAVEMENT PERFORMANCE; PAVEMENT RESPONSE; PREDICTION MODEL; PREDICTION PERFORMANCE; STATISTICAL LEARNING THEORY; STIFFNESS PREDICTION; SUPPORT VECTOR MACHINES (SVM); SVM MODEL;

EID: 78651512466     PISSN: 07339399     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)EM.1943-7889.0000214     Document Type: Article
Times cited : (66)

References (34)
  • 1
    • 78149263424 scopus 로고    scopus 로고
    • Standard method of test for determining dynamic modulus of hot-mix asphalt concrete mixtures
    • AASHTO, AASHTO TP62, Washington, D.C.
    • Standard method of test for determining dynamic modulus of hot-mix asphalt concrete mixtures. 2004, AASHTO, AASHTO TP62, Washington, D.C.
    • (2004)
  • 2
    • 34250658949 scopus 로고    scopus 로고
    • Application of support vector machines in assessing conceptual cost estimates
    • JCCEE5, 0887-3801, 10.1061/(ASCE)0887-3801(2007)21:4(259)
    • An S.H. Park U.Y. Kang K.I. Cho M.Y. Cho H.H. Application of support vector machines in assessing conceptual cost estimates. J. Comput. Civ. Eng. 2007, 21(4):259-264. JCCEE5, 0887-3801, 10.1061/(ASCE)0887-3801(2007)21:4(259), and.
    • (2007) J. Comput. Civ. Eng. , vol.21 , Issue.4 , pp. 259-264
    • An, S.H.1    Park, U.Y.2    Kang, K.I.3    Cho, M.Y.4    Cho, H.H.5
  • 3
    • 1842518014 scopus 로고    scopus 로고
    • Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures
    • and Interim Rep.NCHRP 1-37, Univ. of Maryland, College Park, Md.
    • Andrei D. Witczak M.W. Mirza M.W. Development of a revised predictive model for the dynamic (complex) modulus of asphalt mixtures. 1999, and Interim Rep.NCHRP 1-37, Univ. of Maryland, College Park, Md.
    • (1999)
    • Andrei, D.1    Witczak, M.W.2    Mirza, M.W.3
  • 4
    • 33845535676 scopus 로고    scopus 로고
    • * predictive models for hot mix asphalt mixtures
    • Ph.D. thesis, Arizona State Univ., Tempe, Ariz.
    • * predictive models for hot mix asphalt mixtures. 2005, Ph.D. thesis, Arizona State Univ., Tempe, Ariz.
    • (2005)
    • Bari, J.1
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • DMKDFD, 1384-5810, 10.1023/A:1009715923555.
    • Burges C.J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2(2):121-167. DMKDFD, 1384-5810, 10.1023/A:1009715923555.
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0038823672 scopus 로고    scopus 로고
    • Automating hierarchical document classification for construction management information systems
    • AUCOES, 0926-5805
    • Caldas C.H. Soibelman L. Automating hierarchical document classification for construction management information systems. Autom. Constr. 2003, 12(4):395-406. AUCOES, 0926-5805, and.
    • (2003) Autom. Constr. , vol.12 , Issue.4 , pp. 395-406
    • Caldas, C.H.1    Soibelman, L.2
  • 8
    • 48249124272 scopus 로고    scopus 로고
    • Advanced approaches to hot-mix asphalt dynamic modulus prediction
    • CJCEB8, 0315-1468, 10.1139/L08-016
    • Ceylan H. Gopalakrishnan K. Kim S. Advanced approaches to hot-mix asphalt dynamic modulus prediction. Can. J. Civ. Eng. 2008, 35(7):699-707. CJCEB8, 0315-1468, 10.1139/L08-016, and.
    • (2008) Can. J. Civ. Eng. , vol.35 , Issue.7 , pp. 699-707
    • Ceylan, H.1    Gopalakrishnan, K.2    Kim, S.3
  • 9
    • 70349906630 scopus 로고    scopus 로고
    • Looking to the future: The next-generation hot mix asphalt dynamic modulus prediction models
    • ZZZZZZ, 1029-8436, 10.1080/10298430802342690
    • Ceylan H. Gopalakrishnan K. Kim S. Looking to the future: The next-generation hot mix asphalt dynamic modulus prediction models. Int. J. Pavement Eng. 2009a, 10(5):341-352. ZZZZZZ, 1029-8436, 10.1080/10298430802342690, and.
    • (2009) Int. J. Pavement Eng. , vol.10 , Issue.5 , pp. 341-352
    • Ceylan, H.1    Gopalakrishnan, K.2    Kim, S.3
  • 10
    • 66249108718 scopus 로고    scopus 로고
    • Hot mix asphalt dynamic modulus prediction models using neural network approach
    • C. H. Dagli, A. L. Buczak, D. L. Enke, M. Embrechts, O. Ersoy, ASME, New York.
    • Ceylan H. Kim S. Gopalakrishnan K. Hot mix asphalt dynamic modulus prediction models using neural network approach. Intelligent engineering systems through artificial neural networks 2007, 17:117-124. C. H. Dagli, A. L. Buczak, D. L. Enke, M. Embrechts, O. Ersoy, and Vol. and eds., ASME, New York.
    • (2007) Intelligent engineering systems through artificial neural networks , vol.17 , pp. 117-124
    • Ceylan, H.1    Kim, S.2    Gopalakrishnan, K.3
  • 11
    • 66249148441 scopus 로고    scopus 로고
    • Accuracy of predictive models for dynamic modulus of hot mix asphalt
    • JMCEE7, 0899-1561, 10.1061/(ASCE)0899-1561(2009)21:6(286)
    • Ceylan H. Schwartz C.W. Kim S. Gopalakrishnan K. Accuracy of predictive models for dynamic modulus of hot mix asphalt. J. Mater. Civ. Eng. 2009b, 21(6):286-293. JMCEE7, 0899-1561, 10.1061/(ASCE)0899-1561(2009)21:6(286), and.
    • (2009) J. Mater. Civ. Eng. , vol.21 , Issue.6 , pp. 286-293
    • Ceylan, H.1    Schwartz, C.W.2    Kim, S.3    Gopalakrishnan, K.4
  • 13
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • JCCEE5, 0887-3801, 10.1061/(ASCE)0887-3801(2001)15:3(208)
    • Dibike Y.B. Velickov S. Solomatine D. Abbot M.B. Model induction with support vector machines: Introduction and applications. J. Comput. Civ. Eng. 2001, 15(3):208-216. JCCEE5, 0887-3801, 10.1061/(ASCE)0887-3801(2001)15:3(208), and.
    • (2001) J. Comput. Civ. Eng. , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbot, M.B.4
  • 14
    • 33748030511 scopus 로고    scopus 로고
    • Soil moisture prediction using support vector machines
    • JWRAF5, 1093-474X, 10.1111/j.1752-1688.2006.tb04512.x
    • Gill M.K. Asefa T. Kemblowski M.W. McKee M. Soil moisture prediction using support vector machines. J. Am. Water Resour. Assoc. 2006, 42(4):1033-1046. JWRAF5, 1093-474X, 10.1111/j.1752-1688.2006.tb04512.x, and.
    • (2006) J. Am. Water Resour. Assoc. , vol.42 , Issue.4 , pp. 1033-1046
    • Gill, M.K.1    Asefa, T.2    Kemblowski, M.W.3    McKee, M.4
  • 15
    • 34848870321 scopus 로고    scopus 로고
    • Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data
    • ZZZZZZ, 0266-3524, 10.1016/j.compgeo.2007.06.001
    • Goh A.T. C. Goh S.H. Support vector machines: Their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput. Geotech. 2007, 34(5):410-421. ZZZZZZ, 0266-3524, 10.1016/j.compgeo.2007.06.001, and.
    • (2007) Comput. Geotech. , vol.34 , Issue.5 , pp. 410-421
    • Goh, A.T.C.1    Goh, S.H.2
  • 16
    • 84860184945 scopus 로고    scopus 로고
    • Hot mix asphalt dynamic modulus prediction models using kernel machines
    • C. H. Dagli, K. M. Bryden, S. M. Corns, M. Gen, K. Tumer, G. Suer, ASME, New York.
    • Gopalakrishnan K. Kim S. Ceylan H. Hot mix asphalt dynamic modulus prediction models using kernel machines. Intelligent engineering systems through artificial neural networks 2009, 19:131-138. C. H. Dagli, K. M. Bryden, S. M. Corns, M. Gen, K. Tumer, G. Suer, and Vol. and eds., ASME, New York.
    • (2009) Intelligent engineering systems through artificial neural networks , vol.19 , pp. 131-138
    • Gopalakrishnan, K.1    Kim, S.2    Ceylan, H.3
  • 17
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Technical Rep., Image Speech and Intelligent Systems Research Group, Univ. of Southampton, Southampton, U.K.
    • Gunn S.R. Support vector machines for classification and regression. 1998, Technical Rep., Image Speech and Intelligent Systems Research Group, Univ. of Southampton, Southampton, U.K.
    • (1998)
    • Gunn, S.R.1
  • 20
    • 0003508286 scopus 로고
    • A comparison of uncertainty and sensitivity analysis techniques for computer models
    • and Rep. No.NUREG CR-3904, SAND84-1461, Sandia National Labs, Albuquerque, N.M.
    • Iman R.L. Helton J.C. A comparison of uncertainty and sensitivity analysis techniques for computer models. 1985, and Rep. No.NUREG CR-3904, SAND84-1461, Sandia National Labs, Albuquerque, N.M.
    • (1985)
    • Iman, R.L.1    Helton, J.C.2
  • 22
    • 59249106913 scopus 로고    scopus 로고
    • A support vector machine model for contractor prequalification
    • AUCOES, 0926-5805, 10.1016/j.autcon.2008.09.007
    • Lam K.C. Palaneeswaran E. Yu C. A support vector machine model for contractor prequalification. Autom. Constr. 2009, 18(3):321-329. AUCOES, 0926-5805, 10.1016/j.autcon.2008.09.007, and.
    • (2009) Autom. Constr. , vol.18 , Issue.3 , pp. 321-329
    • Lam, K.C.1    Palaneeswaran, E.2    Yu, C.3
  • 23
    • 28444483767 scopus 로고    scopus 로고
    • SVM and kernel methods Matlab toolbox
    • and UFR Sciences, Dept. Physics, Univ. of Rouen, French, 〈〉 (Nov. 16, 2009).
    • Rakotomamonjy A. Canu S. SVM and kernel methods Matlab toolbox. 2008, and UFR Sciences, Dept. Physics, Univ. of Rouen, French, 〈〉 (Nov. 16, 2009).
    • (2008)
    • Rakotomamonjy, A.1    Canu, S.2
  • 25
    • 42649085069 scopus 로고    scopus 로고
    • Support vector machine applied to settlement of shallow foundations on cohesionless soils
    • ZZZZZZ, 0266-3524, 10.1016/j.compgeo.2007.06.014.
    • Samui P. Support vector machine applied to settlement of shallow foundations on cohesionless soils. Comput. Geotech. 2008, 35(3):419-427. ZZZZZZ, 0266-3524, 10.1016/j.compgeo.2007.06.014.
    • (2008) Comput. Geotech. , vol.35 , Issue.3 , pp. 419-427
    • Samui, P.1
  • 27
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • STACE3, 0960-3174, 10.1023/B:STCO.0000035301.49549.88
    • Smola A. Scholkopf B. A tutorial on support vector regression. Stat. Comput. 2004, 14:199-222. STACE3, 0960-3174, 10.1023/B:STCO.0000035301.49549.88, and.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.1    Scholkopf, B.2
  • 28
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • OMEGAG, 0305-0483, 10.1016/S0305-0483(01)00026-3
    • Tay F.E. H. Cao L. Application of support vector machines in financial time series forecasting. Omega 2001, 29(4):309-317. OMEGAG, 0305-0483, 10.1016/S0305-0483(01)00026-3, and.
    • (2001) Omega , vol.29 , Issue.4 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 29
    • 4544262864 scopus 로고    scopus 로고
    • A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed
    • IEEE, New York.
    • Vanajakshi L. Laurence R.R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed. Proc., IEEE Intelligent Vehicles Symp. 2004, 194-199. and IEEE, New York.
    • (2004) Proc., IEEE Intelligent Vehicles Symp. , pp. 194-199
    • Vanajakshi, L.1    Laurence, R.R.2
  • 33
    • 34249018415 scopus 로고    scopus 로고
    • Simple performance tests: Summary of recommended methods and database
    • National Cooperative Highway Research Program Rep. No.547, Transportation Research Board, Washington, D.C.
    • Witczak M.W. Simple performance tests: Summary of recommended methods and database. 2005, National Cooperative Highway Research Program Rep. No.547, Transportation Research Board, Washington, D.C.
    • (2005)
    • Witczak, M.W.1
  • 34
    • 42649098946 scopus 로고    scopus 로고
    • Slope reliability analysis using a support vector machine
    • ZZZZZZ, 0266-3524, 10.1016/j.compgeo.2007.08.002.
    • Zhao H.B. Slope reliability analysis using a support vector machine. Comput. Geotech. 2008, 35(3):459-467. ZZZZZZ, 0266-3524, 10.1016/j.compgeo.2007.08.002.
    • (2008) Comput. Geotech. , vol.35 , Issue.3 , pp. 459-467
    • Zhao, H.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.