메뉴 건너뛰기




Volumn 25, Issue 3, 2010, Pages 388-407

Laplace approximated EM microarray analysis: An empirical Bayes approach for comparative microarray experiments

Author keywords

EM algorithm; Empirical bayes; Laplace approximation; LEMMA; LIMMA; Linear mixed models; Local false discovery rate; Microarray analysis; Mixture model; Two groups model

Indexed keywords


EID: 78651404580     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/10-STS339     Document Type: Article
Times cited : (15)

References (34)
  • 1
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • ALLISON, D. B., CUI, X., PAGE, G. P. and SABRIPOUR, M. (2006). Microarray data analysis: From disarray to consolidation and consensus. Nat. Genet. 7 55-65.
    • (2006) Nat. Genet. , vol.7 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3    Sabripour, M.4
  • 2
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • ALON, U., BARKAI, N., NOTTERMAN, D. A., GISH, K., YBARRA, S., MACK, D. and LEVINE, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96 6745-6750.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 3
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • BALDI, P. and LONG, A. D. (2001). A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics 17 509-519.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 5
    • 0001677717 scopus 로고
    • Controlling the false discovery rate-a practical and powerful approach to multiple testing
    • BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate-a practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 499-517.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 499-517
    • Benjamini, Y.1    Hochberg, Y.2
  • 7
    • 0034526621 scopus 로고    scopus 로고
    • Microarray expression profiling identifies genes with altered expression in HDL-deficient mice
    • CALLOW, M. J., DUDOIT, S., GONG, E. L., SPEED, T. P. and RUBIN, E. M. (2000). Microarray expression profiling identifies genes with altered expression in HDL-deficient mice. Genome Res. 10 2022-2059.
    • (2000) Genome Res , vol.10 , pp. 2022-2059
    • Callow, M.J.1    Dudoit, S.2    Gong, E.L.3    Speed, T.P.4    Rubin, E.M.5
  • 8
    • 0037276175 scopus 로고    scopus 로고
    • Statistical tests for differential expression in cDNA microarray experiments
    • CUI, X. and CHURCHILL, G. A. (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 4 210.
    • (2003) Genome Biol , vol.4 , pp. 210
    • Cui, X.1    Churchill, G.A.2
  • 9
    • 24144445705 scopus 로고    scopus 로고
    • Improved statistical tests for differential gene expression by shrinking variance components
    • CUI, X., HWANG, J. T. G., QUI, J., BLADES, N. J. and CHURCHILL, G. A. (2005). Improved statistical tests for differential gene expression by shrinking variance components. Bio-statistics 6 59-75.
    • (2005) Bio-statistics , vol.6 , pp. 59-75
    • Cui, X.1    Hwang, J.T.G.2    Qui, J.3    Blades, N.J.4    Churchill, G.A.5
  • 11
    • 18444401138 scopus 로고    scopus 로고
    • A Bayesian mixture model for differential gene expression
    • DO, K.-A., MÜLLER, P. and TANG, F. (2005). A Bayesian mixture model for differential gene expression. J. Roy. Statist. Soc. Ser. C 54 627-644.
    • (2005) J. Roy. Statist. Soc. Ser. C , vol.54 , pp. 627-644
    • Do, K.-A.1    Müller, P.2    Tang, F.3
  • 13
    • 47749152434 scopus 로고    scopus 로고
    • Microarrays, empirical Bayes and the two groups model
    • EFRON, B. (2008). Microarrays, empirical Bayes and the two groups model. Statist. Sci. 23 1-22.
    • (2008) Statist. Sci. , vol.23 , pp. 1-22
    • Efron, B.1
  • 17
    • 0036020944 scopus 로고    scopus 로고
    • Operating characteristics and extensions of the false discovery rate procedure
    • GENOVESE, C. and WASSERMAN, L. (2002). Operating characteristics and extensions of the false discovery rate procedure. J. Roy. Statist. Soc. Ser. B 64 499-517.
    • (2002) J. Roy. Statist. Soc. Ser. B , vol.64 , pp. 499-517
    • Genovese, C.1    Wasserman, L.2
  • 18
    • 78650819751 scopus 로고    scopus 로고
    • Optimal threshold from ROC and CAP curves
    • HONG, C. S. (2009). Optimal threshold from ROC and CAP curves. Comm. Statist. Simulation Comput. 38 2060-2072.
    • (2009) Comm. Statist. Simulation Comput. , vol.38 , pp. 2060-2072
    • Hong, C.S.1
  • 19
    • 77957747432 scopus 로고    scopus 로고
    • Optimal tests shrinking both means and variances applicable to microarray data
    • article 36
    • HWANG, J. T. G. and LIU, P. (2010). Optimal tests shrinking both means and variances applicable to microarray data. Stat. Appl. Genet. Mol. Biol. 9 article 36.
    • (2010) Stat. Appl. Genet. Mol. Biol. , vol.9
    • Hwang, J.T.G.1    Liu, P.2
  • 20
    • 0346888587 scopus 로고    scopus 로고
    • On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles
    • KENDZIORSKI, C. M., NEWTON, M. A., LAN, H. and GOULD, M. N. (2003). On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Stat. Med. 22 3899-3914.
    • (2003) Stat. Med. , vol.22 , pp. 3899-3914
    • Kendziorski, C.M.1    Newton, M.A.2    Lan, H.3    Gould, M.N.4
  • 21
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance in microarray data
    • KERR, M., MARTIN, M. and CHURCHILL, G. (2000). Analysis of variance in microarray data. J. Comput. Biol. 7 819-837.
    • (2000) J. Comput. Biol. , vol.7 , pp. 819-837
    • Kerr, M.1    Martin, M.2    Churchill, G.3
  • 23
    • 84860953761 scopus 로고    scopus 로고
    • Empirical Bayes microarray ANOVA and grouping cell lines by equal expression levels
    • Article 7
    • LONNSTEDT, I., RIMINI, R. and NILSSON, P. (2005). Empirical Bayes microarray ANOVA and grouping cell lines by equal expression levels. Statist. Appl. Genet. Mol. Biol. 4 Article 7.
    • (2005) Statist. Appl. Genet. Mol. Biol. , vol.4
    • Lonnstedt, I.1    Rimini, R.2    Nilsson, P.3
  • 24
    • 0036012343 scopus 로고    scopus 로고
    • Replicated microarray data
    • LONNSTEDT, I. and SPEED, T. (2002). Replicated microarray data. Statist. Sinica 12 31-46.
    • (2002) Statist. Sinica. , vol.12 , pp. 31-46
    • Lonnstedt, I.1    Speed, T.2
  • 25
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • NEWTON, M. A., KENDZIORSKI, C. M., RICHMOND, C. S., BLATTNER, F. R. and TSUI, K. W. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Comput. Biol. 8 37-52.
    • (2001) Comput. Biol. , vol.8 , pp. 37-52
    • Newton, M.A.1    Kendziorski, C.M.2    Richmond, C.S.3    Blattner, F.R.4    Tsui, K.W.5
  • 27
    • 4544341015 scopus 로고    scopus 로고
    • Linear models for empirical Bayes methods for assessing differential expression in microarray experiments
    • Article 3
    • SMYTH, G. K. (2004). Linear models for empirical Bayes methods for assessing differential expression in microarray experiments. Statist. Appl. Genet. Mol. Biol. 3 Article 3.
    • (2004) Statist. Appl. Genet. Mol. Biol. , vol.3
    • Smyth, G.K.1
  • 28
    • 33644872577 scopus 로고    scopus 로고
    • Limma: Linear models for microarray data
    • (R. Gentleman, V. Carey, S. Dudoit, R. Irizarry and W. Huber, eds.) Springer, New York
    • SMYTH, G. K. (2005). Limma: Linear models for microarray data. In Bioinformatics and Computational Biology Solutions using R and Bioconductor (R. Gentleman, V. Carey, S. Dudoit, R. Irizarry and W. Huber, eds.) 397-420. Springer, New York.
    • (2005) Bioinformatics and Computational Biology Solutions using R and Bioconductor , pp. 397-420
    • Smyth, G.K.1
  • 29
    • 0042388208 scopus 로고    scopus 로고
    • RankGene: Identification of diagnostic genes based on expression data
    • SU, Y., MURALI, T. M., PAVLOVIC , V., SCHAFFER, M. and KASIF, S. (2003). RankGene: Identification of diagnostic genes based on expression data. Bioinformatics 19 1578-1579.
    • (2003) Bioinformatics , vol.19 , pp. 1578-1579
    • Su, Y.1    Murali, T.M.2    Pavlovic, V.3    Schaffer, M.4    Kasif, S.5
  • 30
    • 33750414249 scopus 로고    scopus 로고
    • A multivariate empirical Bayes statistic for replicated microarray time course data
    • TAI, Y. C. and SPEED, T. P. (2006). A multivariate empirical Bayes statistic for replicated microarray time course data. Ann. Statist. 34 2387-2412.
    • (2006) Ann. Statist. , vol.34 , pp. 2387-2412
    • Tai, Y.C.1    Speed, T.P.2
  • 31
    • 62949237566 scopus 로고    scopus 로고
    • On gene ranking using replicated microarray time course data
    • TAI, Y. C. and SPEED, T. P. (2009). On gene ranking using replicated microarray time course data. Biometrics 65 40-51.
    • (2009) Biometrics , vol.65 , pp. 40-51
    • Tai, Y.C.1    Speed, T.P.2
  • 32
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • TUSHER, V. G., TIBSHIRANI, R. and CHU, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98 5116-5121.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 33
    • 0348143180 scopus 로고    scopus 로고
    • A random variance model for detection of differential gene expression in small microarray experiments
    • WRIGHT, G. W. and SIMON, R. M. (2003). A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics 19 2448-2455.
    • (2003) Bioinformatics , vol.19 , pp. 2448-2455
    • Wright, G.W.1    Simon, R.M.2
  • 34
    • 77953302815 scopus 로고    scopus 로고
    • Generalized thresholding estimators for high-dimensional location parameters
    • ZHANG, M., ZHANG, D. and WELLS, M. T. (2010). Generalized thresholding estimators for high-dimensional location parameters. Statist. Sinica 20 911-926.
    • (2010) Statist. Sinica. , vol.20 , pp. 911-926
    • Zhang, M.1    Zhang, D.2    Wells, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.