-
1
-
-
0023306712
-
An engineer's guide to solitons phenomena: Application of the finite element method
-
J. Argyris, and M. Haase An engineer's guide to solitons phenomena: application of the finite element method Comput. Methods Appl. Mech. Engrg. 61 1987 71 122
-
(1987)
Comput. Methods Appl. Mech. Engrg.
, vol.61
, pp. 71-122
-
-
Argyris, J.1
Haase, M.2
-
2
-
-
0031632570
-
Numerically absorbing boundary conditions for quantum evolution equations
-
A. Arnold Numerically absorbing boundary conditions for quantum evolution equations VLSI Des. 6 1998 313 319
-
(1998)
VLSI Des.
, vol.6
, pp. 313-319
-
-
Arnold, A.1
-
3
-
-
0001160015
-
Difference schemes for solving the generalized nonlinear Schrödinger equation
-
Q. Chang, E. Jia, and W. Sun Difference schemes for solving the generalized nonlinear Schrödinger equation J. Comput. Phys. 148 1999 397 415
-
(1999)
J. Comput. Phys.
, vol.148
, pp. 397-415
-
-
Chang, Q.1
Jia, E.2
Sun, W.3
-
4
-
-
30344482243
-
A uniformly convergent alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems
-
C. Clavero, J.L. Gracia, and J.C. Jorge A uniformly convergent alternating direction HODIE finite difference scheme for 2D time-dependent convection-diffusion problems IMA J. Numer. Anal. 26 2006 155 172
-
(2006)
IMA J. Numer. Anal.
, vol.26
, pp. 155-172
-
-
Clavero, C.1
Gracia, J.L.2
Jorge, J.C.3
-
5
-
-
0032115144
-
A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems
-
C. Clavero, J.C. Jorge, F. Lisbona, and G.I. Shishkin A fractional step method on a special mesh for the resolution of multidimensional evolutionary convection-diffusion problems Appl. Numer. Math. 27 1998 211 231
-
(1998)
Appl. Numer. Math.
, vol.27
, pp. 211-231
-
-
Clavero, C.1
Jorge, J.C.2
Lisbona, F.3
Shishkin, G.I.4
-
6
-
-
0034382893
-
An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems
-
C. Clavero, J.C. Jorge, F. Lisbona, and G.I. Shishkin An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems IMA J. Numer. Anal. 20 2000 263 280
-
(2000)
IMA J. Numer. Anal.
, vol.20
, pp. 263-280
-
-
Clavero, C.1
Jorge, J.C.2
Lisbona, F.3
Shishkin, G.I.4
-
8
-
-
0003071909
-
Alternating direction implicit methods for two-dimensional diffusion with a non-local boundary condition
-
M. Dehghan Alternating direction implicit methods for two-dimensional diffusion with a nonlocal boundary condition Int. J. Comput. Math. 72 1999 349 366 (Pubitemid 129585969)
-
(1999)
International Journal of Computer Mathematics
, vol.72
, Issue.3
, pp. 349-366
-
-
Dehghan, M.1
-
9
-
-
0036605736
-
A new ADI technique for two-dimensional parabolic equation with an integral condition
-
DOI 10.1016/S0898-1221(02)00113-X, PII S089812210200113X
-
M. Dehghan A new ADI technique for two-dimensional parabolic equation with an integral condition Comput. Math. Appl. 43 2002 1477 1488 (Pubitemid 34573351)
-
(2002)
Computers and Mathematics with Applications
, vol.43
, Issue.12
, pp. 1477-1488
-
-
Dehghan, M.1
-
10
-
-
32644435892
-
Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices
-
M. Dehghan Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices Math. Comput. Simulation 71 2006 16 30
-
(2006)
Math. Comput. Simulation
, vol.71
, pp. 16-30
-
-
Dehghan, M.1
-
11
-
-
57849146059
-
Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method
-
M. Dehghan, and D. Mirzaei Numerical solution to the unsteady two-dimensional Schrödinger equation using meshless local boundary integral equation method Internat. J. Numer. Methods Engrg. 76 2008 501 520
-
(2008)
Internat. J. Numer. Methods Engrg.
, vol.76
, pp. 501-520
-
-
Dehghan, M.1
Mirzaei, D.2
-
12
-
-
47049117992
-
The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation
-
M. Dehghan, and D. Mirzaei The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation Eng. Anal. Bound. Elem. 32 2008 747 756
-
(2008)
Eng. Anal. Bound. Elem.
, vol.32
, pp. 747-756
-
-
Dehghan, M.1
Mirzaei, D.2
-
13
-
-
34347347254
-
A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions
-
M. Dehghan, and A. Shokri A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions Comput. Math. Appl. 54 2007 136 146
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 136-146
-
-
Dehghan, M.1
Shokri, A.2
-
14
-
-
70449631272
-
A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients
-
M. Dehghan, and A. Taleei A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients Comput. Phys. Comm. 181 2010 43 51
-
(2010)
Comput. Phys. Comm.
, vol.181
, pp. 43-51
-
-
Dehghan, M.1
Taleei, A.2
-
15
-
-
77952893917
-
Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method
-
M. Dehghan, and A. Taleei Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-spectral method Numer. Methods Partial Differential Equations 26 2010 979 992
-
(2010)
Numer. Methods Partial Differential Equations
, vol.26
, pp. 979-992
-
-
Dehghan, M.1
Taleei, A.2
-
16
-
-
49149137309
-
Finite difference solution of a nonlinear Schrödinger equation
-
M. Delfour, M. Fortin, and G. Payre Finite difference solution of a nonlinear Schrödinger equation J. Comput. Phys. 44 1981 277 288
-
(1981)
J. Comput. Phys.
, vol.44
, pp. 277-288
-
-
Delfour, M.1
Fortin, M.2
Payre, G.3
-
18
-
-
0001793749
-
On the numerical integration of b2ubx2+b2uby2=bubt by implicit methods
-
J. Douglas Jr. On the numerical integration of b 2 u b x 2 + b 2 u b y 2 = b u b t by implicit methods J. Soc. Ind. Appl. Math. 3 1955 42 65
-
(1955)
J. Soc. Ind. Appl. Math.
, vol.3
, pp. 42-65
-
-
Douglas Jr., J.1
-
19
-
-
84984083796
-
Numerical solution of two-dimensional heat flow problems
-
J. Douglas Jr., and D. Peaceman Numerical solution of two-dimensional heat flow problems AIChE J. 1 1955 505 512
-
(1955)
AIChE J.
, vol.1
, pp. 505-512
-
-
Douglas Jr., J.1
Peaceman, D.2
-
20
-
-
84967782959
-
On the numerical solution of heat conduction problems in two and three space variables
-
J. Douglas Jr., and H. Rachford On the numerical solution of heat conduction problems in two and three space variables Trans. Amer. Math. Soc. 82 1960 421 439
-
(1960)
Trans. Amer. Math. Soc.
, vol.82
, pp. 421-439
-
-
Douglas Jr., J.1
Rachford, H.2
-
22
-
-
36749114276
-
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations
-
R.T. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations J. Math. Phys. 18 1977 1794 1797
-
(1977)
J. Math. Phys.
, vol.18
, pp. 1794-1797
-
-
Glassey, R.T.1
-
23
-
-
0042936309
-
Solution of the Schrodinger equation in two and three dimensions
-
F.Y. Hajj Solution of the Schrodinger equation in two and three dimensions J. Phys. B: At. Mol. Phys. 18 1985 1 11
-
(1985)
J. Phys. B: At. Mol. Phys.
, vol.18
, pp. 1-11
-
-
Hajj, F.Y.1
-
25
-
-
0001257175
-
Numerical experience with the nonlinear Schrödinger equation
-
B.M. Herbst, J.L. Morris, and A.R. Mitchell Numerical experience with the nonlinear Schrödinger equation J. Comput. Phys. 60 1985 282 305
-
(1985)
J. Comput. Phys.
, vol.60
, pp. 282-305
-
-
Herbst, B.M.1
Morris, J.L.2
Mitchell, A.R.3
-
27
-
-
0031237961
-
Operations on oscillatory functions
-
L.Gr. Ixaru Operations on oscillatory functions Comput. Phys. Comm. 105 1997 1 9
-
(1997)
Comput. Phys. Comm.
, vol.105
, pp. 1-9
-
-
Ixaru, L.Gr.1
-
28
-
-
33746827431
-
A semi-discrete higher order compact scheme for the unsteady two-dimensional Schrödinger equation
-
DOI 10.1016/j.cam.2005.10.032, PII S0377042705006485
-
J.C. Kalita, P. Chhabra, and S. Kumar A semi-discrete higher order compact scheme for the unsteady two-dimensional Schrödinger equation J. Comput. Appl. Math. 197 2006 141 149 (Pubitemid 44176245)
-
(2006)
Journal of Computational and Applied Mathematics
, vol.197
, Issue.1
, pp. 141-149
-
-
Kalita, J.C.1
Chhabra, P.2
Kumar, S.3
-
29
-
-
0039756618
-
A space-time finite element method for the nonlinear Schrödinger equation: The discontinuous Galerkin method
-
O. Karakashian, and C. Makridakis A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method Math. Comp. 67 1998 479 499 (Pubitemid 128381533)
-
(1998)
Mathematics of Computation
, vol.67
, Issue.222
, pp. 479-499
-
-
Karakashian, O.1
Makridakis, C.2
-
30
-
-
33847255524
-
High-order schemes for acoustic waveform simulation
-
S. Kim, and H. Lim High-order schemes for acoustic waveform simulation Appl. Numer. Math. 57 2007 402 414
-
(2007)
Appl. Numer. Math.
, vol.57
, pp. 402-414
-
-
Kim, S.1
Lim, H.2
-
32
-
-
33846202566
-
Numerical method for viscous and non-viscous wave equations
-
H. Lim, S. Kim, and J. Douglas Jr. Numerical method for viscous and non-viscous wave equations Appl. Numer. Math. 57 2007 194 212
-
(2007)
Appl. Numer. Math.
, vol.57
, pp. 194-212
-
-
Lim, H.1
Kim, S.2
Douglas Jr., J.3
-
33
-
-
58549095047
-
The use of compact boundary value method for the solution of two-dimensional Schrödinger equation
-
A. Mohebbi, and M. Dehghan The use of compact boundary value method for the solution of two-dimensional Schrödinger equation J. Comput. Appl. Math. 225 2009 124 134
-
(2009)
J. Comput. Appl. Math.
, vol.225
, pp. 124-134
-
-
Mohebbi, A.1
Dehghan, M.2
-
34
-
-
0003172958
-
Pseudo-spectral solution of nonlinear Schrödinger equations
-
D. Pathria, and J.L. Morris Pseudo-spectral solution of nonlinear Schrödinger equations J. Comput. Phys. 87 1990 108 125
-
(1990)
J. Comput. Phys.
, vol.87
, pp. 108-125
-
-
Pathria, D.1
Morris, J.L.2
-
35
-
-
0002058827
-
The numerical solution of parabolic and elliptic equations
-
D. Peaceman, and H. Rachford The numerical solution of parabolic and elliptic equations J. Soc. Ind. Appl. Math. 3 1955 28 41
-
(1955)
J. Soc. Ind. Appl. Math.
, vol.3
, pp. 28-41
-
-
Peaceman, D.1
Rachford, H.2
-
36
-
-
84961470712
-
Methods for the numerical solution of the nonlinear Schrödinger equation
-
J.M. Sanz-Serna Methods for the numerical solution of the nonlinear Schrödinger equation Math. Comp. 43 1984 21 27
-
(1984)
Math. Comp.
, vol.43
, pp. 21-27
-
-
Sanz-Serna, J.M.1
-
37
-
-
0036844275
-
On the finite difference schemes for the numerical solution of two dimensional Schrödinger equation
-
M. Subasi On the finite difference schemes for the numerical solution of two dimensional Schrödinger equation Numer. Methods Partial Differential Equations 18 2002 752 758
-
(2002)
Numer. Methods Partial Differential Equations
, vol.18
, pp. 752-758
-
-
Subasi, M.1
-
39
-
-
84990553244
-
Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation
-
P.L. Sulem, C. Sulem, and A. Patera Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation Comm. Pure Appl. Math. 37 1984 755 778
-
(1984)
Comm. Pure Appl. Math.
, vol.37
, pp. 755-778
-
-
Sulem, P.L.1
Sulem, C.2
Patera, A.3
-
40
-
-
48549114390
-
Analytical and numerical aspects of certain nonlinear evolution equations, II. Numerical nonlinear Schrödinger equation
-
T.R. Taha, and M.J. Ablowitz Analytical and numerical aspects of certain nonlinear evolution equations, II. Numerical nonlinear Schrödinger equation J. Comput. Phys. 55 1984 203 230
-
(1984)
J. Comput. Phys.
, vol.55
, pp. 203-230
-
-
Taha, T.R.1
Ablowitz, M.J.2
-
41
-
-
0000978807
-
The parabolic approximation method
-
Wave Propagation and Underwater Acoustics
-
F.D. Tappert The parabolic approximation method J.B. Keller, J.S. Papadakis, Wave Propagation and Underwater Acoustics Lecture Notes in Physics vol. 70 1977 Springer Berlin 224 287
-
(1977)
Lecture Notes in Physics
, vol.70
, pp. 224-287
-
-
Tappert, F.D.1
-
42
-
-
38249029515
-
An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation
-
Y. Tourigny, and J.L. Morris An investigation into the effect of product approximation in the numerical solution of the cubic nonlinear Schrödinger equation J. Comput. Phys. 76 1988 103 130
-
(1988)
J. Comput. Phys.
, vol.76
, pp. 103-130
-
-
Tourigny, Y.1
Morris, J.L.2
-
43
-
-
0030867040
-
A finite-difference method for solving the cubic Schrödinger equation
-
E.H. Twizell, A.G. Bratsos, and J.C. Newby A finite-difference method for solving the cubic Schrödinger equation Math. Comput. Simulation 43 1997 67 75
-
(1997)
Math. Comput. Simulation
, vol.43
, pp. 67-75
-
-
Twizell, E.H.1
Bratsos, A.G.2
Newby, J.C.3
-
44
-
-
0011495032
-
DuFort-Frankel-type methods for linear and nonlinear Schrödinger equations
-
L. Wu DuFort-Frankel-type methods for linear and nonlinear Schrödinger equations SIAM J. Numer. Anal. 33 1996 1526 1533
-
(1996)
SIAM J. Numer. Anal.
, vol.33
, pp. 1526-1533
-
-
Wu, L.1
-
45
-
-
58349109895
-
Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schröinger equation
-
S. Xie, G. Li, and S. Yi Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schröinger equation Comput. Methods Appl. Mech. Engrg. 198 2009 1052 1060
-
(2009)
Comput. Methods Appl. Mech. Engrg.
, vol.198
, pp. 1052-1060
-
-
Xie, S.1
Li, G.2
Yi, S.3
-
46
-
-
16844366209
-
Local discontinuous Galerkin methods for nonlinear Schrödinger equations
-
Y. Xu, and C.-W. Shu Local discontinuous Galerkin methods for nonlinear Schrödinger equations J. Comput. Phys. 205 2005 72 97
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 72-97
-
-
Xu, Y.1
Shu, C.-W.2
-
48
-
-
0000803378
-
The nature of self-focusing singularity
-
V.E. Zakharov, and V.S. Synakh The nature of self-focusing singularity Sov. Phys. JETP 41 1975 465 468
-
(1975)
Sov. Phys. JETP
, vol.41
, pp. 465-468
-
-
Zakharov, V.E.1
Synakh, V.S.2
-
49
-
-
0010295721
-
Numerical simulation of nonlinear Schrödinger systems: A new conservative scheme
-
F. Zhang, V.M. Pérez-Grarciz, and L. Vázquez Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme Appl. Math. Comput. 71 1995 165 177
-
(1995)
Appl. Math. Comput.
, vol.71
, pp. 165-177
-
-
Zhang, F.1
Pérez-Grarciz, V.M.2
Vázquez, L.3
|