메뉴 건너뛰기




Volumn 19, Issue 1, 2009, Pages 85-98

Gaussian regularized sliced inverse regression

Author keywords

Inverse regression; Regularization; Sufficient dimension reduction

Indexed keywords


EID: 58149492656     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-008-9073-z     Document Type: Article
Times cited : (24)

References (32)
  • 1
    • 33644642688 scopus 로고    scopus 로고
    • Dimension reduction in functional regression with applications
    • U. Amato A. Antoniadis I. De Feiss 2006 Dimension reduction in functional regression with applications Comput. Stat. Data Anal. 50 2422 2446
    • (2006) Comput. Stat. Data Anal. , vol.50 , pp. 2422-2446
    • Amato, U.1    Antoniadis, A.2    De Feiss, I.3
  • 3
    • 0031542360 scopus 로고    scopus 로고
    • Sliced inverse regression: An appraisal of small sample alternatives to slicing
    • Y. Aragon J. Saracco 1997 Sliced inverse regression: an appraisal of small sample alternatives to slicing Comput. Stat. 12 109 130
    • (1997) Comput. Stat. , vol.12 , pp. 109-130
    • Aragon, Y.1    Saracco, J.2
  • 4
    • 58149507826 scopus 로고    scopus 로고
    • Estimation of Mars surface physical properties from hyperspectral images using Sliced Inverse Regression
    • Bernard-Michel, C., Gardes, L., Girard, S.: Estimation of Mars surface physical properties from hyperspectral images using Sliced Inverse Regression. Technical Report, INRIA. http://hal.inria.fr/inria-00187444 (2007)
    • (2007) Technical Report, INRIA
    • Bernard-Michel, C.1    Gardes, L.2    Girard, S.3
  • 5
    • 49749092651 scopus 로고    scopus 로고
    • A note on Sliced Inverse Regression with regularizations
    • to appear
    • Bernard-Michel, C., Gardes, L., Girard, S.: A note on Sliced Inverse Regression with regularizations. Biometrics (2008, to appear)
    • (2008) Biometrics
    • Bernard-Michel, C.1    Gardes, L.2    Girard, S.3
  • 6
    • 0036128489 scopus 로고    scopus 로고
    • Dimension reduction strategies for analyzing global gene expression data with a response
    • F. Chiaromonte J. Martinelli 2002 Dimension reduction strategies for analyzing global gene expression data with a response Math. Biosci. 176 123 144
    • (2002) Math. Biosci. , vol.176 , pp. 123-144
    • Chiaromonte, F.1    Martinelli, J.2
  • 7
    • 84881499895 scopus 로고
    • Discussion of "sliced Inverse Regression for dimension reduction" by K.C. Li
    • R.D. Cook S. Weisberg 1991 Discussion of "Sliced Inverse Regression for dimension reduction" by K.C. Li J. Am. Stat. Assoc. 86 328 332
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 328-332
    • Cook, R.D.1    Weisberg, S.2
  • 8
    • 0003684703 scopus 로고    scopus 로고
    • Regression Graphics. Ideas for Studying Regressions Through Graphics Wiley New York
    • Cook, R.D.: Regression Graphics. Ideas for Studying Regressions Through Graphics. Wiley Series in Probability and Statistics. Wiley, New York (1998)
    • (1998) Wiley Series in Probability and Statistics
    • Cook, R.D.1
  • 9
    • 15844416978 scopus 로고    scopus 로고
    • Testing predictor contributions in sufficient dimension reduction
    • R.D. Cook 2004 Testing predictor contributions in sufficient dimension reduction Ann. Stat. 32 1062 1092
    • (2004) Ann. Stat. , vol.32 , pp. 1062-1092
    • Cook, R.D.1
  • 10
    • 49449106707 scopus 로고    scopus 로고
    • Fisher lecture: Dimension reduction in regression
    • 1
    • R.D. Cook 2007 Fisher lecture: Dimension reduction in regression Stat. Sci. 22 1 1 26
    • (2007) Stat. Sci. , vol.22 , pp. 1-26
    • Cook, R.D.1
  • 11
    • 20444454672 scopus 로고    scopus 로고
    • Sufficient dimension reduction via inverse regression: A minimum discrepancy approach
    • R.D. Cook L. Ni 2005 Sufficient dimension reduction via inverse regression: A minimum discrepancy approach J. Am. Stat. Assoc. 100 410 428
    • (2005) J. Am. Stat. Assoc. , vol.100 , pp. 410-428
    • Cook, R.D.1    Ni, L.2
  • 15
    • 0032337534 scopus 로고    scopus 로고
    • Determining the dimension in Sliced Inverse Regression and related methods
    • L. Ferré 1998 Determining the dimension in Sliced Inverse Regression and related methods J. Am. Stat. Assoc. 93 132 140
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 132-140
    • Ferré, L.1
  • 16
    • 27144503064 scopus 로고    scopus 로고
    • Smoothed functional inverse regression
    • L. Ferré A.F. Yao 2005 Smoothed functional inverse regression Stat. Sin. 15 665 683
    • (2005) Stat. Sin. , vol.15 , pp. 665-683
    • Ferré, L.1    Yao, A.F.2
  • 17
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • J.H. Friedman 1989 Regularized discriminant analysis J. Am. Stat. Assoc. 84 165 175
    • (1989) J. Am. Stat. Assoc. , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 19
    • 0001189848 scopus 로고
    • Generation of random orthogonal matrices
    • R. Heiberger 1978 Generation of random orthogonal matrices J. R. Stat. Soc. Ser. C 27 199 206
    • (1978) J. R. Stat. Soc. Ser. C , vol.27 , pp. 199-206
    • Heiberger, R.1
  • 20
    • 0000906634 scopus 로고
    • An asymptotic theory for Sliced Inverse Regression
    • 2
    • T. Hsing R.J. Carroll 1992 An asymptotic theory for Sliced Inverse Regression Ann. Stat. 20 2 1040 1061
    • (1992) Ann. Stat. , vol.20 , pp. 1040-1061
    • Hsing, T.1    Carroll, R.J.2
  • 21
    • 84945116550 scopus 로고
    • Sliced Inverse Regression for dimension reduction
    • K.C. Li 1991 Sliced Inverse Regression for dimension reduction J. Am. Stat. Assoc. 86 316 327
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 316-327
    • Li, K.C.1
  • 22
    • 12344271032 scopus 로고    scopus 로고
    • Dimension reduction methods for micro-arrays with application to censored survival data
    • 18
    • L. Li H. Li 2004 Dimension reduction methods for micro-arrays with application to censored survival data Bioinformatics 20 18 3406 3412
    • (2004) Bioinformatics , vol.20 , pp. 3406-3412
    • Li, L.1    Li, H.2
  • 23
    • 39849095569 scopus 로고    scopus 로고
    • Sliced Inverse Regression with regularizations
    • 1
    • L. Li X. Yin 2008 Sliced Inverse Regression with regularizations Biometrics 64 1 124 131
    • (2008) Biometrics , vol.64 , pp. 124-131
    • Li, L.1    Yin, X.2
  • 24
    • 0031221011 scopus 로고    scopus 로고
    • An asymptotic theory for Sliced Inverse Regression
    • J. Saracco 1997 An asymptotic theory for Sliced Inverse Regression Commun. Stat. Theory Methods 26 2141 2171
    • (1997) Commun. Stat. Theory Methods , vol.26 , pp. 2141-2171
    • Saracco, J.1
  • 26
    • 34247492193 scopus 로고    scopus 로고
    • Wavanglet: An efficient supervised classifier for hyperspectral images
    • 5
    • F. Schmidt S. Douté B. Schmitt 2007 Wavanglet: an efficient supervised classifier for hyperspectral images Geosci. Remote Sens. IEEE Trans. 45 5 1374 1385
    • (2007) Geosci. Remote Sens. IEEE Trans. , vol.45 , pp. 1374-1385
    • Schmidt, F.1    Douté, S.2    Schmitt, B.3
  • 27
    • 21344478847 scopus 로고
    • Determining the dimensionality in Sliced Inverse Regression
    • J.R. Schott 1994 Determining the dimensionality in Sliced Inverse Regression J. Am. Stat. Assoc. 89 141 148
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 141-148
    • Schott, J.R.1
  • 29
    • 34548205979 scopus 로고    scopus 로고
    • Class prediction and gene selection for DNA microarrays using regularized Sliced Inverse Regression
    • L. Scrucca 2007 Class prediction and gene selection for DNA microarrays using regularized Sliced Inverse Regression Comput. Stat. Data Anal. 52 438 451
    • (2007) Comput. Stat. Data Anal. , vol.52 , pp. 438-451
    • Scrucca, L.1
  • 31
    • 27944453151 scopus 로고    scopus 로고
    • RSIR: Regularized Sliced Inverse Regression for motif discovery
    • 22
    • W. Zhong P. Zeng P. Ma J.S. Liu Y. Zhu 2005 RSIR: Regularized Sliced Inverse Regression for motif discovery Bioinformatics 21 22 4169 4175
    • (2005) Bioinformatics , vol.21 , pp. 4169-4175
    • Zhong, W.1    Zeng, P.2    Ma, P.3    Liu, J.S.4    Zhu, Y.5
  • 32
    • 0001601159 scopus 로고
    • Asymptotics of Sliced Inverse Regression
    • L.X. Zhu K.W. Ng 1995 Asymptotics of Sliced Inverse Regression Stat. Sin. 5 727 736
    • (1995) Stat. Sin. , vol.5 , pp. 727-736
    • Zhu, L.X.1    Ng, K.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.