메뉴 건너뛰기




Volumn 31, Issue 11, 2010, Pages 2428-2433

Nonlinear process monitoring and fault diagnosis based on KPCA and MKL-SVM

Author keywords

Fault diagnosis; Kernel principal component analysis; Multiple kernel learning; Process monitoring; Support vector machine

Indexed keywords

CONTROL LIMITS; FAULT DETECTION AND DIAGNOSIS; FAULT DIAGNOSIS; FEATURE SPACE; KERNEL PRINCIPAL COMPONENT ANALYSIS; MULTIPLE FAULTS; MULTIPLE KERNEL LEARNING; NONLINEAR PROCESS MONITORING; SIMULATION RESULT; SVM CLASSIFICATION; TENNESSEE EASTMAN;

EID: 78650780371     PISSN: 02543087     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (15)
  • 2
    • 67649195571 scopus 로고    scopus 로고
    • Monitoring method for batch process based on ICA-MPCA
    • Xiao Y W, Xu B G. Monitoring method for batch process based on ICA-MPCA[J]. Chinese Journal of Scientific Instrument, 2009, 30(5):990-996.
    • (2009) Chinese Journal of Scientific Instrument , vol.30 , Issue.5 , pp. 990-996
    • Xiao, Y.W.1    Xu, B.G.2
  • 3
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of process with multiple operating modes through multiple PLS models
    • Zhao Sh J, Zhang J, Xu Y M. Performance monitoring of process with multiple operating modes through multiple PLS models[J]. Journal of process Control, 2006, 16(7):763-772.
    • (2006) Journal of process Control , vol.16 , Issue.7 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 5
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B, Smola A J, Muller K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10:1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.3
  • 6
    • 77949907666 scopus 로고    scopus 로고
    • An integrated identification method based on KPCA-PNN for complex industrial process
    • Bo C M, Wang Zh Q, Zhang G M. An integrated identification method based on KPCA-PNN for complex industrial process[J]. Information and Control, 2009, 38(1):98-109.
    • (2009) Information and Control , vol.38 , Issue.1 , pp. 98-109
    • Bo, C.M.1    Wang, Z.Q.2    Zhang, G.M.3
  • 7
    • 0345566447 scopus 로고    scopus 로고
    • Fault diagnosis using support vector machine with an application in sheet metal stamping operations
    • Ge M, Du R, Zhang G C, et al. Fault diagnosis using support vector machine with an application in sheet metal stamping operations[J]. Mechanical Systems & Signal Processing, 2004, 18:143-159.
    • (2004) Mechanical Systems & Signal Processing , vol.18 , pp. 143-159
    • Ge, M.1    Du, R.2    Zhang, G.C.3
  • 8
    • 44849132657 scopus 로고    scopus 로고
    • Chaotic time series prediction based on multi-kernel learning support vector regression
    • Zhang J F, Hu SH S. Chaotic time series prediction based on multi-kernel learning support vector regression[J]. Acta Phys. Sin., 2008, 57(5):2708-2713.
    • (2008) Acta Phys. Sin. , vol.57 , Issue.5 , pp. 2708-2713
    • Zhang, J.F.1    Hu, S.S.2
  • 9
    • 34250018610 scopus 로고    scopus 로고
    • Fault diagnosis of complex chemical process based on KPCA-SVC
    • Liu AI L, Yuan X Y, Yu J SH. Fault diagnosis of complex chemical process based on KPCA-SVC[J]. Chinese Journal of Scientific Instrument, 2007, 28(5):868-872.
    • (2007) Chinese Journal of Scientific Instrument , vol.28 , Issue.5 , pp. 868-872
    • Liu, A.L.1    Yuan, X.Y.2    Yu, J.S.3
  • 10
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho J H, Lee J M, Choi S W. Fault identification for process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2005, 60(1):279-288.
    • (2005) Chemical Engineering Science , vol.60 , Issue.1 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3
  • 11
    • 77949283344 scopus 로고    scopus 로고
    • Fault detection for process monitoring using improved kernel principal component analysis
    • Shanghai
    • Xu J, Hu Sh S, Shen ZH Y. Fault detection for process monitoring using improved kernel principal component analysis[J]. AICI2009, Shanghai: 334-338.
    • AICI2009 , pp. 334-338
    • Xu, J.1    Hu, S.S.2    Shen, Z.Y.3
  • 13
    • 0001614864 scopus 로고    scopus 로고
    • The MOSEK interior point optimizer for linear programming
    • Berlin: Springer
    • Anderson E D, Anderson A D. The MOSEK interior point optimizer for linear programming[C]//High Performance Optimization Berlin: Springer, 2000:197-232.
    • (2000) High Performance Optimization , pp. 197-232
    • Anderson, E.D.1    Anderson, A.D.2
  • 15
    • 0036466502 scopus 로고    scopus 로고
    • Dynamic process fault monitoring based on neural network and PCA
    • Chen J H, Liao C M. Dynamic process fault monitoring based on neural network and PCA[J]. Journal of Process Control, 2002, 12(2):277-289.
    • (2002) Journal of Process Control , vol.12 , Issue.2 , pp. 277-289
    • Chen, J.H.1    Liao, C.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.