메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 334-338

Fault detection for process monitoring using improved kernel principal component analysis

Author keywords

Fault detection; Feature vector selection; Kernel principal component analysis; Wavelet analysis

Indexed keywords

CHEMICAL PROCESS; COMPUTATION COMPLEXITY; DATA SETS; FEATURE SPACE; FEATURE VECTOR SELECTION; FEATURE VECTORS; GEOMETRICAL CONSIDERATIONS; KERNEL PRINCIPAL COMPONENT ANALYSIS; SIMULATION RESULT; TENNESSEE EASTMAN PROCESS; WAVELET PACKET TRANSFORMS;

EID: 77949283344     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/AICI.2009.43     Document Type: Conference Paper
Times cited : (3)

References (10)
  • 1
    • 29244459165 scopus 로고    scopus 로고
    • Double moving window MPCA for online adaptive batch monitoring
    • Zhao L J , Cai T Y, Wang G. Double moving window MPCA for online adaptive batch monitoring. Chin. J. Chem. Eng. , 2005 , 13 (5) : 649-655
    • (2005) Chin. J. Chem. Eng , vol.13 , Issue.5 , pp. 649-655
    • Zhao, L.J.1    Cai, T.Y.2    Wang, G.3
  • 2
    • 0034334827 scopus 로고    scopus 로고
    • Nonlinear principal component s analysis wit h application to process faultdetection1
    • Jia F , Martin E B , Morris A J. Nonlinear principal component s analysis wit h application to process faultdetection1 International Journal of Systems Science , 2001 , 31 : 1473 - 1487
    • (2001) International Journal of Systems Science , vol.31 , pp. 1473-1487
    • Jia, F.1    Martin, E.B.2    Morris, A.J.3
  • 3
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee J M, Yoo C K, Lee I B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering , 2004 , 28 : 1837-1847
    • (2004) Computers and Chemical Engineering , vol.28 , pp. 1837-1847
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 4
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 2004, 59: 5897-5908
    • (2004) Chemical Engineering Science , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.B.2
  • 5
    • 33645900880 scopus 로고    scopus 로고
    • Fan Liping, Yu Haibin , Yuan Decheng1 Monitoring of SBR process using kernel principal component analysis. Chinese Journal of Scientific Instrument, 2006, 27 (3): 249-253
    • Fan Liping, Yu Haibin , Yuan Decheng1 Monitoring of SBR process using kernel principal component analysis. Chinese Journal of Scientific Instrument, 2006, 27 (3): 249-253
  • 6
    • 48049091561 scopus 로고    scopus 로고
    • Fault identification of Tennessee Eastman process based on FS-KPCA
    • Bo Cuimei, Zhang Shi, Zhang Guangming, Wang Zhiquan. Fault identification of Tennessee Eastman process based on FS-KPCA. Journal of Chemical Industry and Engineering, 2008, 59(7):1783-1789
    • (2008) Journal of Chemical Industry and Engineering , vol.59 , Issue.7 , pp. 1783-1789
    • Bo, C.1    Shi, Z.2    Zhang, G.3    Wang, Z.4
  • 8
    • 0347243182 scopus 로고    scopus 로고
    • Muller K1 Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, Smola A J, Muller K1 Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998,.10: 1299-1319
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, S.A.J.1
  • 9
    • 0242383468 scopus 로고    scopus 로고
    • Feature vector selection and projection using kernels1
    • Baudat G, Anouar F. Feature vector selection and projection using kernels1 Neurocomputing, 2003, 55: 21-38
    • (2003) Neurocomputing , vol.55 , pp. 21-38
    • Baudat, G.1    Anouar, F.2
  • 10
    • 0037084628 scopus 로고    scopus 로고
    • Manabu Kano, Koji Nagao1 Comparison of multivariate statistical process monitoring methods wit h applications to t he Eastman challenge problem1 Computers and Chemical Engineering, 2002, 26 : 161-174
    • Manabu Kano, Koji Nagao1 Comparison of multivariate statistical process monitoring methods wit h applications to t he Eastman challenge problem1 Computers and Chemical Engineering, 2002, 26 : 161-174


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.