-
1
-
-
29244459165
-
Double moving window MPCA for online adaptive batch monitoring
-
Zhao L J , Cai T Y, Wang G. Double moving window MPCA for online adaptive batch monitoring. Chin. J. Chem. Eng. , 2005 , 13 (5) : 649-655
-
(2005)
Chin. J. Chem. Eng
, vol.13
, Issue.5
, pp. 649-655
-
-
Zhao, L.J.1
Cai, T.Y.2
Wang, G.3
-
2
-
-
0034334827
-
Nonlinear principal component s analysis wit h application to process faultdetection1
-
Jia F , Martin E B , Morris A J. Nonlinear principal component s analysis wit h application to process faultdetection1 International Journal of Systems Science , 2001 , 31 : 1473 - 1487
-
(2001)
International Journal of Systems Science
, vol.31
, pp. 1473-1487
-
-
Jia, F.1
Martin, E.B.2
Morris, A.J.3
-
3
-
-
2442495227
-
Fault detection of batch processes using multiway kernel principal component analysis
-
Lee J M, Yoo C K, Lee I B. Fault detection of batch processes using multiway kernel principal component analysis. Computers and Chemical Engineering , 2004 , 28 : 1837-1847
-
(2004)
Computers and Chemical Engineering
, vol.28
, pp. 1837-1847
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
4
-
-
10044259622
-
Nonlinear dynamic process monitoring based on dynamic kernel PCA
-
Choi S W, Lee I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 2004, 59: 5897-5908
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 5897-5908
-
-
Choi, S.W.1
Lee, I.B.2
-
5
-
-
33645900880
-
-
Fan Liping, Yu Haibin , Yuan Decheng1 Monitoring of SBR process using kernel principal component analysis. Chinese Journal of Scientific Instrument, 2006, 27 (3): 249-253
-
Fan Liping, Yu Haibin , Yuan Decheng1 Monitoring of SBR process using kernel principal component analysis. Chinese Journal of Scientific Instrument, 2006, 27 (3): 249-253
-
-
-
-
6
-
-
48049091561
-
Fault identification of Tennessee Eastman process based on FS-KPCA
-
Bo Cuimei, Zhang Shi, Zhang Guangming, Wang Zhiquan. Fault identification of Tennessee Eastman process based on FS-KPCA. Journal of Chemical Industry and Engineering, 2008, 59(7):1783-1789
-
(2008)
Journal of Chemical Industry and Engineering
, vol.59
, Issue.7
, pp. 1783-1789
-
-
Bo, C.1
Shi, Z.2
Zhang, G.3
Wang, Z.4
-
7
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee J M, Yoo C K, Choi S W, Vanrolleghem P A, and Lee I B. "Nonlinear process monitoring using kernel principal component analysis", Chemical Engineering Science,2004,59: 223-234
-
(2004)
Chemical Engineering Science
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
8
-
-
0347243182
-
Muller K1 Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf, Smola A J, Muller K1 Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998,.10: 1299-1319
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, S.A.J.1
-
9
-
-
0242383468
-
Feature vector selection and projection using kernels1
-
Baudat G, Anouar F. Feature vector selection and projection using kernels1 Neurocomputing, 2003, 55: 21-38
-
(2003)
Neurocomputing
, vol.55
, pp. 21-38
-
-
Baudat, G.1
Anouar, F.2
-
10
-
-
0037084628
-
-
Manabu Kano, Koji Nagao1 Comparison of multivariate statistical process monitoring methods wit h applications to t he Eastman challenge problem1 Computers and Chemical Engineering, 2002, 26 : 161-174
-
Manabu Kano, Koji Nagao1 Comparison of multivariate statistical process monitoring methods wit h applications to t he Eastman challenge problem1 Computers and Chemical Engineering, 2002, 26 : 161-174
-
-
-
|