메뉴 건너뛰기




Volumn 36, Issue 1, 2011, Pages 339-347

Artificial neural networks for analysis of process states in fluidized bed combustion

Author keywords

Fluidized bed; Multilayer perceptron; Neural network; Process state; Self organizing map

Indexed keywords

BOILERS; CONFORMAL MAPPING; ELECTRIC LOADS; FLUIDIZATION; FLUIDIZED BED PROCESS; FLUIDIZED BEDS; MULTILAYERS; NITRIC OXIDE; NITROGEN OXIDES; PATTERN RECOGNITION SYSTEMS; SELF ORGANIZING MAPS;

EID: 78650740102     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2010.10.033     Document Type: Article
Times cited : (62)

References (41)
  • 1
    • 85019521098 scopus 로고    scopus 로고
    • Directive 2009/29/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 2003/87/EC so as to improve and extend the greenhouse gas emission allowance trading scheme of the Community. European Council; April 23
    • Directive 2009/29/EC of the European Parliament and of the Council of 23 April 2009 amending Directive 2003/87/EC so as to improve and extend the greenhouse gas emission allowance trading scheme of the Community. European Council; April 23, 2009.
    • (2009)
  • 2
    • 28544447154 scopus 로고    scopus 로고
    • EPA/430/R-01/006, United States Environmental Protection Agency, Washington DC, February
    • Nitrogen: Multiple and Regional Impacts February 2002, EPA/430/R-01/006, United States Environmental Protection Agency, Washington DC.
    • (2002) Nitrogen: Multiple and Regional Impacts
  • 3
    • 67449101924 scopus 로고    scopus 로고
    • EPA/600/R-08/071, United States Environmental Protection Agency, Research Triangle Park, NC, July
    • Integrated Science Assessment for oxides of nitrogen - health criteria July 2008, EPA/600/R-08/071, United States Environmental Protection Agency, Research Triangle Park, NC.
    • (2008) Integrated Science Assessment for oxides of nitrogen - health criteria
  • 6
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin Heidelberg New York
    • Kohonen T. Self-organizing maps 2001, Springer-Verlag, Berlin Heidelberg New York. 3rd ed.
    • (2001) Self-organizing maps
    • Kohonen, T.1
  • 12
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: analysis, modeling and application
    • Kalteh A.M., Hjorth P., Berndtsson R. Review of the self-organizing map (SOM) approach in water resources: analysis, modeling and application. Environmental Modelling & Software 2008, 23:835-845.
    • (2008) Environmental Modelling & Software , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 13
    • 0346186573 scopus 로고
    • Process state monitoring using self-organizing maps
    • Amsterdam, North-Holland, I. Aleksander, J. Taylor (Eds.)
    • Kasslin M., Kangas J., Simula O. Process state monitoring using self-organizing maps. Artificial neural networks 2 1992, vol. I:1532-1534. Amsterdam, North-Holland. I. Aleksander, J. Taylor (Eds.).
    • (1992) Artificial neural networks 2 , vol.1 , pp. 1532-1534
    • Kasslin, M.1    Kangas, J.2    Simula, O.3
  • 17
    • 78650726962 scopus 로고    scopus 로고
    • Modeling of process states by using artificial neural networks in a fluidized bed energy plant
    • Argesim Publishing House, Vienna, I. Troch, F. Breitenecker (Eds.)
    • Liukkonen M., Heikkinen M., Hiltunen T., Hälikkä E., Kuivalainen R., Hiltunen Y. Modeling of process states by using artificial neural networks in a fluidized bed energy plant. Proc. MATHMOD 09 Vienna [CD-ROM] 2009, 397-402. Argesim Publishing House, Vienna. I. Troch, F. Breitenecker (Eds.).
    • (2009) Proc. MATHMOD 09 Vienna [CD-ROM] , pp. 397-402
    • Liukkonen, M.1    Heikkinen, M.2    Hiltunen, T.3    Hälikkä, E.4    Kuivalainen, R.5    Hiltunen, Y.6
  • 18
    • 77957899725 scopus 로고    scopus 로고
    • Quality-oriented optimization of wave soldering process by using self-organizing maps
    • Liukkonen M., Havia E., Leinonen H., Hiltunen Y. Quality-oriented optimization of wave soldering process by using self-organizing maps. Applied Soft Computing 2011, 11:214-220.
    • (2011) Applied Soft Computing , vol.11 , pp. 214-220
    • Liukkonen, M.1    Havia, E.2    Leinonen, H.3    Hiltunen, Y.4
  • 19
    • 71849108091 scopus 로고    scopus 로고
    • Using minimum quantization error chart for the monitoring of process states in multivariate manufacturing processes
    • Yu J.-B., Wang S. Using minimum quantization error chart for the monitoring of process states in multivariate manufacturing processes. Computers & Industrial Engineering 2009, 57:1300-1312.
    • (2009) Computers & Industrial Engineering , vol.57 , pp. 1300-1312
    • Yu, J.-B.1    Wang, S.2
  • 21
    • 9944242270 scopus 로고    scopus 로고
    • Selection of input parameters to model direct solar irradiance by using artificial neural networks
    • López G., Batlles F.J., Tovar-Pescador J. Selection of input parameters to model direct solar irradiance by using artificial neural networks. Energy 2005, 30:1675-1684.
    • (2005) Energy , vol.30 , pp. 1675-1684
    • López, G.1    Batlles, F.J.2    Tovar-Pescador, J.3
  • 22
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks
    • Tso G.K.F., Yau K.K.W. Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks. Energy 2007, 32:1761-1768.
    • (2007) Energy , vol.32 , pp. 1761-1768
    • Tso, G.K.F.1    Yau, K.K.W.2
  • 23
    • 0142156058 scopus 로고    scopus 로고
    • x emission characteristics of a tangentially fired boiler with artificial neural networks
    • x emission characteristics of a tangentially fired boiler with artificial neural networks. Energy 2004, 29:167-183.
    • (2004) Energy , vol.29 , pp. 167-183
    • Zhou, H.1    Cen, K.2    Fan, J.3
  • 24
    • 60449106698 scopus 로고    scopus 로고
    • Development of artificial neural network model for a coal-fired boiler using real plant data
    • Smrekar J., Assadi M., Fast M., Kuštrin I., De S. Development of artificial neural network model for a coal-fired boiler using real plant data. Energy 2009, 34:144-152.
    • (2009) Energy , vol.34 , pp. 144-152
    • Smrekar, J.1    Assadi, M.2    Fast, M.3    Kuštrin, I.4    De, S.5
  • 26
    • 0033231790 scopus 로고    scopus 로고
    • Combustion of coal in circulating fluidized-bed boilers: a review
    • Basu P. Combustion of coal in circulating fluidized-bed boilers: a review. Chemical Engineering Science 1999, 54:5547-5557.
    • (1999) Chemical Engineering Science , vol.54 , pp. 5547-5557
    • Basu, P.1
  • 27
  • 28
    • 1342344557 scopus 로고    scopus 로고
    • 2O emissions in pressurized fluidized bed combustion of subbituminous coals
    • 2O emissions in pressurized fluidized bed combustion of subbituminous coals. Fuel 2004, 83:1095-1103.
    • (2004) Fuel , vol.83 , pp. 1095-1103
    • Svoboda, K.1    Pohořelý, M.2
  • 29
    • 61749094904 scopus 로고    scopus 로고
    • Experimental trends of NO in circulating fluidized bed combustion
    • Tourunen A., Saastamoinen J., Nevalainen H. Experimental trends of NO in circulating fluidized bed combustion. Fuel 2009, 88:1333-1341.
    • (2009) Fuel , vol.88 , pp. 1333-1341
    • Tourunen, A.1    Saastamoinen, J.2    Nevalainen, H.3
  • 30
    • 0037174614 scopus 로고    scopus 로고
    • Optimization of emissions from fluidized bed combustion of coal, biofuel and waste
    • Leckner B., Lyngfelt A. Optimization of emissions from fluidized bed combustion of coal, biofuel and waste. International Journal of Energy Research 2002, 26:1191-1202.
    • (2002) International Journal of Energy Research , vol.26 , pp. 1191-1202
    • Leckner, B.1    Lyngfelt, A.2
  • 35
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97:245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 37
    • 39149116851 scopus 로고    scopus 로고
    • Chapman & Hall, United States of America, H. Liu, H. Motoda (Eds.)
    • Computational methods of feature selection 2008, Chapman & Hall, United States of America. H. Liu, H. Motoda (Eds.).
    • (2008) Computational methods of feature selection
  • 38
    • 0015125457 scopus 로고
    • A direct method of nonparametric measurement selection
    • Whitney A.W. A direct method of nonparametric measurement selection. IEEE Transactions on Computers 1971, C-20:1100-1103.
    • (1971) IEEE Transactions on Computers , vol.C-20 , pp. 1100-1103
    • Whitney, A.W.1
  • 41
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott C.J. On the validation of models. Physical Geography 1981, 2:184-194.
    • (1981) Physical Geography , vol.2 , pp. 184-194
    • Willmott, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.