-
1
-
-
0003259517
-
Quantum cryptography: Public key distribution and coin tossing
-
Systems, and Signal Processing, (IEEE Press, New York, Bangalore, India)
-
C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," in "Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing," (IEEE Press, New York, Bangalore, India, 1984), pp. 175-179.
-
(1984)
Proceedings of IEEE International Conference on Computers
, pp. 175-179
-
-
Bennett, C.H.1
Brassard, G.2
-
2
-
-
0343152990
-
Quantum cryptography based on bell theorem
-
A. K. Ekert, "Quantum cryptography based on bell theorem," Phys. Rev. Lett. 67, 661-663 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 661-663
-
-
Ekert, A.K.1
-
3
-
-
0033605546
-
Unconditional security of quantum key distribution over arbitrarily long distances
-
H.-K. Lo and H. F. Chau, "Unconditional security of quantum key distribution over arbitrarily long distances," Science 283, 2050-2056 (1999).
-
(1999)
Science
, vol.283
, pp. 2050-2056
-
-
Lo, H.-K.1
Chau, H.F.2
-
4
-
-
0347090658
-
Simple proof of security of the BB84 quantum key distribution protocol
-
P. W. Shor and J. Preskill, "Simple proof of security of the BB84 quantum key distribution protocol," Phys. Rev. Lett. 85, 441-444 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 441-444
-
-
Shor, P.W.1
Preskill, J.2
-
5
-
-
67651213420
-
High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres
-
D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, "High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres," N. J. Phys. 11, 075003 (2009).
-
(2009)
N. J. Phys.
, vol.11
, pp. 075003
-
-
Stucki, D.1
Walenta, N.2
Vannel, G.3
Thew, R.T.4
Gisin, N.5
Zbinden, H.6
Gray, S.7
Towery, C.R.8
Ten, S.9
-
6
-
-
84894006438
-
-
Commercial QKD systems are available from at least two companies: ID Quantique (Switzerland), MagiQ Technologies (USA), http://www.magiqtech.com
-
Commercial QKD systems are available from at least two companies: ID Quantique (Switzerland), http://www.idquantique.com; MagiQ Technologies (USA), http://www.magiqtech.com.
-
-
-
-
7
-
-
84955621476
-
Advances in cryptology
-
vol. 1109, N. Koblitz, ed. Springer, New York
-
D. Mayers, "Advances in cryptology," in "Proceedings of Crypto'96," , vol. 1109, N. Koblitz, ed. (Springer, New York, 1996), vol. 1109, pp. 343-357.
-
(1996)
Proceedings of Crypto'96
, vol.1109
, pp. 343-357
-
-
Mayers, D.1
-
8
-
-
7044249607
-
Security of quantum key distribution with imperfect devices
-
D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quantum Inf. Comput. 4, 325-360 (2004).
-
(2004)
Quantum Inf. Comput.
, vol.4
, pp. 325-360
-
-
Gottesman, D.1
Lo, H.-K.2
Lütkenhaus, N.3
Preskill, J.4
-
9
-
-
33846980802
-
Unconditional security of practical quantum key distribution
-
H. Inamori, N. Lütkenhaus, and D. Mayers, "Unconditional security of practical quantum key distribution," Eur. Phys. J. D 41, 599-627 (2007).
-
(2007)
Eur. Phys. J. D
, vol.41
, pp. 599-627
-
-
Inamori, H.1
Lütkenhaus, N.2
Mayers, D.3
-
10
-
-
66449101012
-
Security proof of quantum key distribution with detection efficiency mismatch
-
C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, "Security proof of quantum key distribution with detection efficiency mismatch," Quantum Inf. Comput. 9, 131-165 (2009).
-
(2009)
Quantum Inf. Comput.
, vol.9
, pp. 131-165
-
-
Fung, C.-H.F.1
Tamaki, K.2
Qi, B.3
Lo, H.-K.4
Ma, X.5
-
11
-
-
77953935498
-
Security of quantum key distribution with bit and basis dependent detector flaws
-
L. Lydersen and J. Skaar, "Security of quantum key distribution with bit and basis dependent detector flaws," Quantum Inf. Comput. 10, 0060 (2010).
-
(2010)
Quantum Inf. Comput.
, vol.10
, pp. 0060
-
-
Lydersen, L.1
Skaar, J.2
-
12
-
-
77957328020
-
Security of quantum key distribution with arbitrary individual imperfections
-
Ø. Marøy, L. Lydersen, and J. Skaar, "Security of quantum key distribution with arbitrary individual imperfections," Phys. Rev. A 82, 032337 (2010).
-
(2010)
Phys. Rev. A
, vol.82
, pp. 032337
-
-
Marøy, Ø.1
Lydersen, L.2
Skaar, J.3
-
13
-
-
0035841908
-
Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography
-
A. Vakhitov, V. Makarov, and D. R. Hjelme, "Large pulse attack as a method of conventional optical eavesdropping in quantum cryptography," J. Mod. Opt. 48, 2023-2038 (2001).
-
(2001)
J. Mod. Opt.
, vol.48
, pp. 2023-2038
-
-
Vakhitov, A.1
Makarov, V.2
Hjelme, D.R.3
-
14
-
-
33646373811
-
Trojan-horse attacks on quantum-key-distribution systems
-
N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, "Trojan-horse attacks on quantum-key-distribution systems," Phys. Rev. A 73, 022320 (2006).
-
(2006)
Phys. Rev. A
, vol.73
, pp. 022320
-
-
Gisin, N.1
Fasel, S.2
Kraus, B.3
Zbinden, H.4
Ribordy, G.5
-
15
-
-
33846365694
-
Effects of detector efficiency mismatch on security of quantum cryptosystems
-
V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems," Phys. Rev. A 74, 022313 (2006).
-
(2006)
Phys. Rev. A
, vol.74
, pp. 022313
-
-
Makarov, V.1
Anisimov, A.2
Skaar, J.3
-
16
-
-
33846365694
-
-
V. Makarov, A. Anisimov, and J. Skaar, "Effects of detector efficiency mismatch on security of quantum cryptosystems: Erratum," 78, 019905 (2008).
-
(2008)
Effects of Detector Efficiency Mismatch on Security of Quantum Cryptosystems: Erratum
, vol.78
, pp. 019905
-
-
Makarov, V.1
Anisimov, A.2
Skaar, J.3
-
17
-
-
44149085575
-
Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols
-
V. Makarov and J. Skaar, "Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols," Quantum Inf. Comput. 8, 0622 (2008).
-
(2008)
Quantum Inf. Comput.
, vol.8
, pp. 0622
-
-
Makarov, V.1
Skaar, J.2
-
18
-
-
33846202211
-
Time-shift attack in practical quantum cryptosystems
-
B. Qi, C.-H. F. Fung, H.-K. Lo, and X. Ma, "Time-shift attack in practical quantum cryptosystems," Quantum Inf. Comput. 7, 73-82 (2007).
-
(2007)
Quantum Inf. Comput.
, vol.7
, pp. 73-82
-
-
Qi, B.1
Fung, C.-H.F.2
Lo, H.-K.3
Ma, X.4
-
19
-
-
55049100546
-
Quantum hacking: Experimental demonstration of timeshift attack against practical quantum-key-distribution systems
-
Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, "Quantum hacking: Experimental demonstration of timeshift attack against practical quantum-key-distribution systems," Phys. Rev. A 78, 042333 (2008).
-
(2008)
Phys. Rev. A
, vol.78
, pp. 042333
-
-
Zhao, Y.1
Fung, C.-H.F.2
Qi, B.3
Chen, C.4
Lo, H.-K.5
-
20
-
-
34547403333
-
Breaking a quantum key distribution system through a timing side channel
-
A. Lamas-Linares and C. Kurtsiefer, "Breaking a quantum key distribution system through a timing side channel," Opt. Express 15, 9388-9393 (2007).
-
(2007)
Opt. Express
, vol.15
, pp. 9388-9393
-
-
Lamas-Linares, A.1
Kurtsiefer, C.2
-
21
-
-
67650091527
-
Information leakage via side channels in freespace BB84 quantum cryptography
-
S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, "Information leakage via side channels in freespace BB84 quantum cryptography," N. J. Phys. 11, 065001 (2009).
-
(2009)
N. J. Phys.
, vol.11
, pp. 065001
-
-
Nauerth, S.1
Fürst, M.2
Schmitt-Manderbach, T.3
Weier, H.4
Weinfurter, H.5
-
22
-
-
33947205243
-
Phase-remapping attack in practical quantum-key-distribution systems
-
C.-H. F. Fung, B. Qi, K. Tamaki, and H.-K. Lo, "Phase-remapping attack in practical quantum-key-distribution systems," Phys. Rev. A 75, 032314 (2007).
-
(2007)
Phys. Rev. A
, vol.75
, pp. 032314
-
-
Fung, C.-H.F.1
Qi, B.2
Tamaki, K.3
Lo, H.-K.4
-
23
-
-
78650161554
-
Experimental demonstration of phase-remapping attack in a practical quantum key distribution system
-
F. Xu, B. Qi, and H.-K. Lo, "Experimental demonstration of phase-remapping attack in a practical quantum key distribution system," N. J. Phys. 12, 113026 (2010).
-
(2010)
N. J. Phys.
, vol.12
, pp. 113026
-
-
Xu, F.1
Qi, B.2
Lo, H.-K.3
-
24
-
-
84894007118
-
-
Precisely, the quantum bit error rate (QBER) is the fraction given by the number of bits which differ in Alice's and Bob's raw key, divided by the length of the raw key
-
Precisely, the quantum bit error rate (QBER) is the fraction given by the number of bits which differ in Alice's and Bob's raw key, divided by the length of the raw key.
-
-
-
-
25
-
-
0036997507
-
Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate
-
H. F. Chau, "Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate," Phys. Rev. A 66, 060302 (2002).
-
(2002)
Phys. Rev. A
, vol.66
, pp. 060302
-
-
Chau, H.F.1
-
26
-
-
0037319628
-
Proof of security of quantum key distribution with two-way classical communications
-
D. Gottesman and H.-K. Lo, "Proof of security of quantum key distribution with two-way classical communications," IEEE Trans. Inf. Theory 49, 457-475 (2003).
-
(2003)
IEEE Trans. Inf. Theory
, vol.49
, pp. 457-475
-
-
Gottesman, D.1
Lo, H.-K.2
-
27
-
-
67650035011
-
Controlling passively quenched single photon detectors by bright light
-
V. Makarov, "Controlling passively quenched single photon detectors by bright light," N. J. Phys. 11, 065003 (2009).
-
(2009)
N. J. Phys.
, vol.11
, pp. 065003
-
-
Makarov, V.1
-
29
-
-
77957566438
-
Hacking commercial quantum cryptography systems by tailored bright illumination
-
L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, "Hacking commercial quantum cryptography systems by tailored bright illumination," Nat. Photonics 4, 686-689 (2010).
-
(2010)
Nat. Photonics
, vol.4
, pp. 686-689
-
-
Lydersen, L.1
Wiechers, C.2
Wittmann, C.3
Elser, D.4
Skaar, J.5
Makarov, V.6
-
30
-
-
84893986502
-
-
e-print arXiv:1009.2683 [quant-ph]
-
C.Wiechers, L. Lydersen, C.Wittmann, D. Elser, J. Skaar, C. Marquardt, V. Makarov, and G. Leuchs, "After-gate attack on a quantum cryptosystem," e-print arXiv:1009.2683 [quant-ph] .
-
After-gate Attack on a Quantum Cryptosystem
-
-
Wiechers, C.1
Lydersen, L.2
Wittmann, C.3
Elser, D.4
Skaar, J.5
Marquardt, C.6
Makarov, V.7
Leuchs, G.8
-
31
-
-
78650568291
-
-
e-print arXiv:1011.0105 [quant-ph]
-
I. Gerhardt, Q. Liu, J. Skaar, A. Lamas-Linares, C. Kurtsiefer, and V. Makarov, "Perfect eavesdropping on a quantum cryptography system," e-print arXiv:1011.0105 [quant-ph] .
-
Perfect Eavesdropping on a Quantum Cryptography System
-
-
Gerhardt, I.1
Liu, Q.2
Skaar, J.3
Lamas-Linares, A.4
Kurtsiefer, C.5
Makarov, V.6
-
32
-
-
33748509539
-
Free-space quantum key distribution with entangled photons
-
I. Marcikic, A. Lamas-Linares, and C. Kurtsiefer, "Free-space quantum key distribution with entangled photons," Appl. Phys. Lett. 89, 101122 (2006).
-
(2006)
Appl. Phys. Lett.
, vol.89
, pp. 101122
-
-
Marcikic, I.1
Lamas-Linares, A.2
Kurtsiefer, C.3
-
33
-
-
66249133960
-
Daylight operation of a free space, entanglement-based quantum key distribution system
-
M. P. Peloso, I. Gerhardt, C. Ho, A. Lamas-Linares, and C. Kurtsiefer, "Daylight operation of a free space, entanglement-based quantum key distribution system," N. J. Phys. 11, 045007 (2009).
-
(2009)
N. J. Phys.
, vol.11
, pp. 045007
-
-
Peloso, M.P.1
Gerhardt, I.2
Ho, C.3
Lamas-Linares, A.4
Kurtsiefer, C.5
-
34
-
-
78649831321
-
Avoiding the detector blinding attack on quantum cryptography
-
Z. L. Yuan, J. F. Dynes, and A. J. Shields, "Avoiding the detector blinding attack on quantum cryptography," Nat. Photonics 4, 800-801 (2010).
-
(2010)
Nat. Photonics
, vol.4
, pp. 800-801
-
-
Yuan, Z.L.1
Dynes, J.F.2
Shields, A.J.3
-
35
-
-
3142589119
-
Evolution and prospects for single-photon avalanche diodes and quenching circuits
-
S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, "Evolution and prospects for single-photon avalanche diodes and quenching circuits," J. Mod. Opt. 51, 1267-1288 (2004).
-
(2004)
J. Mod. Opt.
, vol.51
, pp. 1267-1288
-
-
Cova, S.1
Ghioni, M.2
Lotito, A.3
Rech, I.4
Zappa, G.5
-
37
-
-
27844566291
-
Faked states attack on quantum cryptosystems
-
V. Makarov and D. R. Hjelme, "Faked states attack on quantum cryptosystems," J. Mod. Opt. 52, 691-705 (2005).
-
(2005)
J. Mod. Opt.
, vol.52
, pp. 691-705
-
-
Makarov, V.1
Hjelme, D.R.2
-
38
-
-
1642383816
-
Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations
-
V. Scarani, A. Acín, G. Ribordy, and N. Gisin, "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92, 057901 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 057901
-
-
Scarani, V.1
Acín, A.2
Ribordy, G.3
Gisin, N.4
-
39
-
-
0041415963
-
Quantum key distribution with high loss: Toward global secure communication
-
W.-Y. Hwang, "Quantum key distribution with high loss: Toward global secure communication," Phys. Rev. Lett. 91, 057901 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 057901
-
-
Hwang, W.-Y.1
-
40
-
-
27744568650
-
Beating the photon-number-splitting attack in practical quantum cryptography
-
X.-B. Wang, "Beating the photon-number-splitting attack in practical quantum cryptography," Phys. Rev. Lett. 94, 230503 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 230503
-
-
Wang, X.-B.1
-
41
-
-
27744479495
-
Decoy state quantum key distribution
-
H.-K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94, 230504 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 230504
-
-
Lo, H.-K.1
Ma, X.2
Chen, K.3
-
42
-
-
0019539404
-
Towards picosecond resolution with single-photon avalanche diodes
-
S. Cova, A. Longoni, and A. Andreoni, "Towards picosecond resolution with single-photon avalanche diodes," Rev. Sci. Instrum. 52, 408-412 (1981).
-
(1981)
Rev. Sci. Instrum.
, vol.52
, pp. 408-412
-
-
Cova, S.1
Longoni, A.2
Andreoni, A.3
-
43
-
-
0033907404
-
An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light
-
D. S. Bethune and W. P. Risk, "An autocompensating fiber-optic quantum cryptography system based on polarization splitting of light," IEEE J. Quantum Electron. 36, 340-347 (2000).
-
(2000)
IEEE J. Quantum Electron.
, vol.36
, pp. 340-347
-
-
Bethune, D.S.1
Risk, W.P.2
-
44
-
-
0037109434
-
Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm
-
A. Tomita and K. Nakamura, "Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm," Opt. Lett. 27, 1827-1829 (2002).
-
(2002)
Opt. Lett.
, vol.27
, pp. 1827-1829
-
-
Tomita, A.1
Nakamura, K.2
-
45
-
-
34547394809
-
High speed single photon detection in the near infrared
-
Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 041114
-
-
Yuan, Z.L.1
Kardynal, B.E.2
Sharpe, A.W.3
Shields, A.J.4
-
46
-
-
84893988442
-
-
Osterm PE4-115-14-15, visited 3. August
-
Osterm, PE4-115-14-15, http://osterm.ru/PAGE/MULTISTAGE.HTM, visited 3. August 2010.
-
(2010)
-
-
-
47
-
-
84894006482
-
-
When the temperature increases, the lattice vibrations in the APD increase. This increases the probability that the electron collides with the lattice, and therefore reduces the probability that the electron gains enough energy to trigger ionization of a new electron-hole pair. Therefore, to ensure that the electron gains ionization energy, the electric field must be larger, and thus the breakdown voltage is increased
-
When the temperature increases, the lattice vibrations in the APD increase. This increases the probability that the electron collides with the lattice, and therefore reduces the probability that the electron gains enough energy to trigger ionization of a new electron-hole pair. Therefore, to ensure that the electron gains ionization energy, the electric field must be larger, and thus the breakdown voltage is increased.
-
-
-
-
49
-
-
84893991992
-
-
Marlow, NL4012, visited 3. August
-
Marlow, NL4012, http://www.marlow.com/media/marlow/product/downloads/ nl4012t/NL4012.pdf, visited 3. August 2010.
-
(2010)
-
-
-
50
-
-
84894001628
-
-
The detectors do not have any dark counts and are assumed blind at a temperature of about -40?C at the cold plate, or when the bias voltage is decreased by 0.97V. If one assumes that the APD temperature is equal to the cold plate temperature, this means that heating the detectors by 10K is equivalent to decreasing the bias voltage by about 1V
-
The detectors do not have any dark counts and are assumed blind at a temperature of about -40?C at the cold plate, or when the bias voltage is decreased by 0.97V. If one assumes that the APD temperature is equal to the cold plate temperature, this means that heating the detectors by 10K is equivalent to decreasing the bias voltage by about 1V.
-
-
-
-
51
-
-
0032178451
-
Automated 'plug & play' quantum key distribution
-
G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, "Automated 'plug & play' quantum key distribution," Electron. Lett. 34, 2116-2117 (1998).
-
(1998)
Electron. Lett.
, vol.34
, pp. 2116-2117
-
-
Ribordy, G.1
Gautier, J.-D.2
Gisin, N.3
Guinnard, O.4
Zbinden, H.5
-
52
-
-
0011769922
-
Quantum key distribution over 67 km with a plug&play system
-
D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," N. J. Phys. 4, 41 (2002).
-
(2002)
N. J. Phys.
, vol.4
, pp. 41
-
-
Stucki, D.1
Gisin, N.2
Guinnard, O.3
Ribordy, G.4
Zbinden, H.5
-
53
-
-
0036013605
-
Quantum cryptography
-
N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002).
-
(2002)
Rev. Mod. Phys.
, vol.74
, pp. 145-195
-
-
Gisin, N.1
Ribordy, G.2
Tittel, W.3
Zbinden, H.4
-
55
-
-
0034652078
-
Fast and user-friendly quantum key distribution
-
G. Ribordy, J.-D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, "Fast and user-friendly quantum key distribution," J. Mod. Opt. 47, 517-531 (2000).
-
(2000)
J. Mod. Opt.
, vol.47
, pp. 517-531
-
-
Ribordy, G.1
Gautier, J.-D.2
Gisin, N.3
Guinnard, O.4
Zbinden, H.5
-
56
-
-
84893999021
-
-
The system actually sends the qubits in frames of 1075 qubits each., We initially made a mistake when counting them and used 1072 qubits, which is very close and does not affect the results
-
The system actually sends the qubits in frames of 1075 qubits each. We initially made a mistake when counting them and used 1072 qubits, which is very close and does not affect the results.
-
-
-
-
57
-
-
84893993228
-
-
We picked the second bit to simplify synchronization in our measurement setup., The results for the first bit should be very similar to the results for the second bit
-
We picked the second bit to simplify synchronization in our measurement setup. The results for the first bit should be very similar to the results for the second bit.
-
-
-
-
58
-
-
27144459059
-
Quantum information with continuous variables
-
S. L. Braunstein and P. van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513-577 (2005).
-
(2005)
Rev. Mod. Phys.
, vol.77
, pp. 513-577
-
-
Braunstein, S.L.1
Van Loock, P.2
-
59
-
-
77951928425
-
Continuous-variable quantum information processing
-
ArXiv:1008.3468v1 [quant-ph]
-
U. L. Andersen, G. Leuchs, and C. Silberhorn, "Continuous-variable quantum information processing," Laser Photon. Rev. 4, 337 (2010), ArXiv:1008.3468v1 [quant-ph].
-
(2010)
Laser Photon. Rev.
, vol.4
, Issue.337
-
-
Andersen, U.L.1
Leuchs, G.2
Silberhorn, C.3
|