메뉴 건너뛰기




Volumn 280, Issue 1, 2008, Pages 145-205

A centre-stable manifold for the focussing cubic NLS in ℝ1+3

Author keywords

[No Author keywords available]

Indexed keywords


EID: 43349101598     PISSN: 00103616     EISSN: 14320916     Source Type: Journal    
DOI: 10.1007/s00220-008-0427-3     Document Type: Article
Times cited : (22)

References (48)
  • 1
    • 0000815745 scopus 로고
    • Spectral properties of Schrdinger operators and scattering theory
    • 2
    • Agmon S. (1975). Spectral properties of Schrdinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2): 151-218
    • (1975) Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) , vol.2 , pp. 151-218
    • Agmon, S.1
  • 2
    • 0002538743 scopus 로고
    • Invariant manifolds for semilinear partial differential equations
    • Bates P.W. and Jones C.K.R.T. (1989). Invariant manifolds for semilinear partial differential equations. Dynamics Reported 2: 1-38
    • (1989) Dynamics Reported , vol.2 , pp. 1-38
    • Bates, P.W.1    Jones, C.K.R.T.2
  • 3
    • 0000817006 scopus 로고
    • Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires
    • 9
    • Berestycki H. and Cazenave T. (1981). Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9): 489-492
    • (1981) C. R. Acad. Sci. Paris Sér. i Math. , vol.293 , pp. 489-492
    • Berestycki, H.1    Cazenave, T.2
  • 4
    • 0020591567 scopus 로고
    • Nonlinear scalar field equations. I. Existence of a ground state
    • 4
    • Berestycki H. and Lions P.L. (1983). Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rat. Mech. Anal. 82(4): 313-345
    • (1983) Arch. Rat. Mech. Anal. , vol.82 , pp. 313-345
    • Berestycki, H.1    Lions, P.L.2
  • 6
    • 0002189021 scopus 로고
    • Scattering for the nonlinear Schrödinger equation: States that are close to a soliton (Russian)
    • Buslaev, V.S., Perelman, G.S.: Scattering for the nonlinear Schrödinger equation: states that are close to a soliton (Russian). Algebra i Analiz 4(6), 63-102 (1992);
    • (1992) Algebra i Analiz , vol.4 , Issue.6 , pp. 63-102
    • Buslaev, V.S.1    Perelman, G.S.2
  • 7
    • 0000073733 scopus 로고
    • translation in St. Petersburg Math. J. 4(6), 1111-1142 (1993)
    • (1993) St. Petersburg Math. J. , vol.4 , Issue.6 , pp. 1111-1142
  • 8
    • 0002779183 scopus 로고
    • On the stability of solitary waves for nonlinear Schrödinger equations
    • Nonlinear evolution equations Providence, RI: Amer. Math. Soc.
    • Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Providence, RI: Amer. Math. Soc. 1995, pp. 75-98
    • (1995) Amer. Math. Soc. Transl. Ser. 2 , vol.164 , pp. 75-98
    • Buslaev, V.S.1    Perelman, G.S.2
  • 11
    • 27944431626 scopus 로고
    • translation in J. Math. Sci. 77(3), 3161-3169 (1995)
    • (1995) J. Math. Sci. , vol.77 , Issue.3 , pp. 3161-3169
  • 12
    • 5444256656 scopus 로고    scopus 로고
    • Semilinear Schrödinger equations
    • New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc.
    • Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc., 2003
    • (2003) Courant Lecture Notes in Mathematics , vol.10
    • Cazenave, T.1
  • 13
    • 0000090159 scopus 로고
    • Orbital stability of standing waves for some nonlinear Schrödinger equations
    • Cazenave T. and Lions P.L. (1982). Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85: 549-561
    • (1982) Commun. Math. Phys. , vol.85 , pp. 549-561
    • Cazenave, T.1    Lions, P.L.2
  • 14
    • 0015249887 scopus 로고
    • 3 = 0 and a variational characterization of other solutions
    • 3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal. 46: 81-95
    • (1972) Arch. Rat. Mech. Anal. , vol.46 , pp. 81-95
    • Coffman, C.V.1
  • 15
    • 0035595894 scopus 로고    scopus 로고
    • Stabilization of solutions to nonlinear Schrödinger equations
    • 9
    • Cuccagna S. (2001). Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl. Math. 54(9): 1110-1145
    • (2001) Comm. Pure Appl. Math. , vol.54 , pp. 1110-1145
    • Cuccagna, S.1
  • 16
    • 10244243814 scopus 로고    scopus 로고
    • Spectra of positive and negative energies in the linearized NLS problem
    • 1
    • Cuccagna S., Pelinovsky D. and Vougalter V. (2005). Spectra of positive and negative energies in the linearized NLS problem. Comm. Pure Appl. Math. 58(1): 1-29
    • (2005) Comm. Pure Appl. Math. , vol.58 , pp. 1-29
    • Cuccagna, S.1    Pelinovsky, D.2    Vougalter, V.3
  • 17
    • 33645070786 scopus 로고    scopus 로고
    • Numerical verification of a gap condition for a linearized NLS equation
    • Demanet L. and Schlag W. (2006). Numerical verification of a gap condition for a linearized NLS equation. Nonlinearity 19: 829-852
    • (2006) Nonlinearity , vol.19 , pp. 829-852
    • Demanet, L.1    Schlag, W.2
  • 18
    • 33645089826 scopus 로고    scopus 로고
    • Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II
    • Erdogan, B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II. To appear in Journal d'Analyse Mathematique, available at http://arxiv.org/list/math/0504585, 2005
    • (2005) Journal d'Analyse Mathematique
    • Erdogan, B.1    Schlag, W.2
  • 19
    • 0039596758 scopus 로고    scopus 로고
    • A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations
    • 1
    • Gesztesy F., Jones C.K.R.T., Latushkin Y. and Stanislavova M. (2000). A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations. Indiana Univ. Math. J. 49(1): 221-243
    • (2000) Indiana Univ. Math. J. , vol.49 , pp. 221-243
    • Gesztesy, F.1    Jones, C.K.R.T.2    Latushkin, Y.3    Stanislavova, M.4
  • 20
    • 36749114276 scopus 로고
    • On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation
    • Glassey R.T. (1977). On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 18: 1794-1797
    • (1977) J. Math. Phys. , vol.18 , pp. 1794-1797
    • Glassey, R.T.1
  • 21
    • 0000468151 scopus 로고
    • Stability theory of solitary waves in the presence of symmetry. i
    • 1
    • Grillakis M., Shatah J. and Strauss W. (1987). Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1): 160-197
    • (1987) J. Funct. Anal. , vol.74 , pp. 160-197
    • Grillakis, M.1    Shatah, J.2    Strauss, W.3
  • 22
    • 29444432472 scopus 로고
    • Stability theory of solitary waves in the presence of symmetry. II
    • 1
    • Grillakis M., Shatah J. and Strauss W. (1990). Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(1): 308-348
    • (1990) J. Funct. Anal. , vol.94 , pp. 308-348
    • Grillakis, M.1    Shatah, J.2    Strauss, W.3
  • 23
    • 43349095912 scopus 로고    scopus 로고
    • Exponential decay of eigenfunctions and generalized eigenfunctions of a non self-adjoint matrix Schrödinger operator related to NLS
    • 5
    • Hundertmark D. and Lee Y.-R. (2007). Exponential decay of eigenfunctions and generalized eigenfunctions of a non self-adjoint matrix Schrödinger operator related to NLS. Bull. London Math. Soc. 39(5): 709-720
    • (2007) Bull. London Math. Soc. , vol.39 , pp. 709-720
    • Hundertmark, D.1    Lee, Y.-R.2
  • 24
    • 0001138601 scopus 로고    scopus 로고
    • Endpoint Strichartz estimates
    • Keel M. and Tao T. (1998). Endpoint Strichartz estimates. Amer. Math. J. 120: 955-980
    • (1998) Amer. Math. J. , vol.120 , pp. 955-980
    • Keel, M.1    Tao, T.2
  • 25
    • 33750526878 scopus 로고    scopus 로고
    • Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case
    • 3
    • Kenig C. and Merle F. (2006). Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Inv. Math. 166(3): 645-675
    • (2006) Inv. Math. , vol.166 , pp. 645-675
    • Kenig, C.1    Merle, F.2
  • 26
    • 0000127687 scopus 로고
    • Self-focusing of optical beams
    • Kelley P.L. (1965). Self-focusing of optical beams. Phys. Rev. Lett. 15: 1005-1008
    • (1965) Phys. Rev. Lett. , vol.15 , pp. 1005-1008
    • Kelley, P.L.1
  • 27
    • 33749459423 scopus 로고    scopus 로고
    • Stable manifolds for all monic supercritical NLS in one dimension
    • 4
    • Krieger J. and Schlag W. (2006). Stable manifolds for all monic supercritical NLS in one dimension. J. AMS 19(4): 815-920
    • (2006) J. AMS , vol.19 , pp. 815-920
    • Krieger, J.1    Schlag, W.2
  • 29
    • 34250849129 scopus 로고    scopus 로고
    • On the focusing critical semi-linear wave equation
    • 3
    • Krieger J. and Schlag W. (2007). On the focusing critical semi-linear wave equation. Amer. J. Math. 129(3): 843-913
    • (2007) Amer. J. Math. , vol.129 , pp. 843-913
    • Krieger, J.1    Schlag, W.2
  • 32
    • 84974001368 scopus 로고
    • Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
    • 2
    • Merle F. (1993). Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2): 427-454
    • (1993) Duke Math. J. , vol.69 , pp. 427-454
    • Merle, F.1
  • 33
    • 30644464564 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • 1
    • 2 critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19(1): 37-90
    • (2006) J. Amer. Math. Soc. , vol.19 , pp. 37-90
    • Merle, F.1    Raphael, P.2
  • 34
    • 0035537074 scopus 로고    scopus 로고
    • On the formation of singularities in solutions of the critical nonlinear Schrödinger equation
    • 4
    • Perelman G. (2001). On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2(4): 605-673
    • (2001) Ann. Henri Poincaré , vol.2 , pp. 605-673
    • Perelman, G.1
  • 35
    • 0001322178 scopus 로고    scopus 로고
    • Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations
    • 2
    • Pillet C.A. and Wayne C.E. (1997). Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Diff. Eq. 141(2): 310-326
    • (1997) J. Diff. Eq. , vol.141 , pp. 310-326
    • Pillet, C.A.1    Wayne, C.E.2
  • 36
    • 1542508715 scopus 로고    scopus 로고
    • Time decay for solutions of Schrödinger equations with rough and time-dependent potentials
    • 3
    • Rodnianski I. and Schlag W. (2004). Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3): 451-513
    • (2004) Invent. Math. , vol.155 , pp. 451-513
    • Rodnianski, I.1    Schlag, W.2
  • 40
    • 33750419023 scopus 로고    scopus 로고
    • Spectral theory and nonlinear partial differential equations: A survey
    • 3
    • Schlag W. (2006). Spectral theory and nonlinear partial differential equations: a survey. Discrete Contin. Dyn. Syst. 15(3): 703-723
    • (2006) Discrete Contin. Dyn. Syst. , vol.15 , pp. 703-723
    • Schlag, W.1
  • 41
    • 0000301325 scopus 로고
    • Multichannel nonlinear scattering for nonintegrable equations
    • Soffer A. and Weinstein M.I. (1990). Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys. 133: 119-146
    • (1990) Comm. Math. Phys. , vol.133 , pp. 119-146
    • Soffer, A.1    Weinstein, M.I.2
  • 43
    • 0004136765 scopus 로고
    • Princeton University Press Princeton, NJ
    • Stein E. (1994). Harmonic Analysis. Princeton University Press, Princeton, NJ
    • (1994) Harmonic Analysis
    • Stein, E.1
  • 44
    • 0003230098 scopus 로고    scopus 로고
    • The Nonlinear Schrödinger equation. Self-focusing and wave collapse
    • New York: Springer-Verlag
    • Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, 139, New York: Springer-Verlag, 1999
    • (1999) Applied Mathematical Sciences , vol.139
    • Sulem, C.1    Sulem, P.-L.2
  • 45
    • 0008341765 scopus 로고    scopus 로고
    • Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials
    • Providence, RI: Amer. Math. Soc.
    • Taylor, M.E.: Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, 81, Providence, RI: Amer. Math. Soc., 2000
    • (2000) Mathematical Surveys and Monographs , vol.81
    • Taylor, M.E.1
  • 46
    • 84990553584 scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive equations
    • 1
    • Weinstein M.I. (1986). Lyapunov stability of ground states of nonlinear dispersive equations. Comm. Pure Appl. Math. 39(1): 51-67
    • (1986) Comm. Pure Appl. Math. , vol.39 , pp. 51-67
    • Weinstein, M.I.1
  • 47
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • 3
    • Weinstein M.I. (1985). Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3): 472-491
    • (1985) SIAM J. Math. Anal. , vol.16 , pp. 472-491
    • Weinstein, M.I.1
  • 48
    • 24144491045 scopus 로고    scopus 로고
    • Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue
    • 2
    • Yajima K. (2005). Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue. Commun. Math. Phys. 259(2): 475-509
    • (2005) Commun. Math. Phys. , vol.259 , pp. 475-509
    • Yajima, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.