-
1
-
-
0000815745
-
Spectral properties of Schrdinger operators and scattering theory
-
2
-
Agmon S. (1975). Spectral properties of Schrdinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2(2): 151-218
-
(1975)
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
, vol.2
, pp. 151-218
-
-
Agmon, S.1
-
2
-
-
0002538743
-
Invariant manifolds for semilinear partial differential equations
-
Bates P.W. and Jones C.K.R.T. (1989). Invariant manifolds for semilinear partial differential equations. Dynamics Reported 2: 1-38
-
(1989)
Dynamics Reported
, vol.2
, pp. 1-38
-
-
Bates, P.W.1
Jones, C.K.R.T.2
-
3
-
-
0000817006
-
Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires
-
9
-
Berestycki H. and Cazenave T. (1981). Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math. 293(9): 489-492
-
(1981)
C. R. Acad. Sci. Paris Sér. i Math.
, vol.293
, pp. 489-492
-
-
Berestycki, H.1
Cazenave, T.2
-
4
-
-
0020591567
-
Nonlinear scalar field equations. I. Existence of a ground state
-
4
-
Berestycki H. and Lions P.L. (1983). Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rat. Mech. Anal. 82(4): 313-345
-
(1983)
Arch. Rat. Mech. Anal.
, vol.82
, pp. 313-345
-
-
Berestycki, H.1
Lions, P.L.2
-
6
-
-
0002189021
-
Scattering for the nonlinear Schrödinger equation: States that are close to a soliton (Russian)
-
Buslaev, V.S., Perelman, G.S.: Scattering for the nonlinear Schrödinger equation: states that are close to a soliton (Russian). Algebra i Analiz 4(6), 63-102 (1992);
-
(1992)
Algebra i Analiz
, vol.4
, Issue.6
, pp. 63-102
-
-
Buslaev, V.S.1
Perelman, G.S.2
-
7
-
-
0000073733
-
-
translation in St. Petersburg Math. J. 4(6), 1111-1142 (1993)
-
(1993)
St. Petersburg Math. J.
, vol.4
, Issue.6
, pp. 1111-1142
-
-
-
8
-
-
0002779183
-
On the stability of solitary waves for nonlinear Schrödinger equations
-
Nonlinear evolution equations Providence, RI: Amer. Math. Soc.
-
Buslaev, V.S., Perelman, G.S.: On the stability of solitary waves for nonlinear Schrödinger equations. In: Nonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Providence, RI: Amer. Math. Soc. 1995, pp. 75-98
-
(1995)
Amer. Math. Soc. Transl. Ser. 2
, vol.164
, pp. 75-98
-
-
Buslaev, V.S.1
Perelman, G.S.2
-
11
-
-
27944431626
-
-
translation in J. Math. Sci. 77(3), 3161-3169 (1995)
-
(1995)
J. Math. Sci.
, vol.77
, Issue.3
, pp. 3161-3169
-
-
-
12
-
-
5444256656
-
Semilinear Schrödinger equations
-
New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc.
-
Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc., 2003
-
(2003)
Courant Lecture Notes in Mathematics
, vol.10
-
-
Cazenave, T.1
-
13
-
-
0000090159
-
Orbital stability of standing waves for some nonlinear Schrödinger equations
-
Cazenave T. and Lions P.L. (1982). Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85: 549-561
-
(1982)
Commun. Math. Phys.
, vol.85
, pp. 549-561
-
-
Cazenave, T.1
Lions, P.L.2
-
14
-
-
0015249887
-
3 = 0 and a variational characterization of other solutions
-
3 = 0 and a variational characterization of other solutions. Arch. Rat. Mech. Anal. 46: 81-95
-
(1972)
Arch. Rat. Mech. Anal.
, vol.46
, pp. 81-95
-
-
Coffman, C.V.1
-
15
-
-
0035595894
-
Stabilization of solutions to nonlinear Schrödinger equations
-
9
-
Cuccagna S. (2001). Stabilization of solutions to nonlinear Schrödinger equations. Comm. Pure Appl. Math. 54(9): 1110-1145
-
(2001)
Comm. Pure Appl. Math.
, vol.54
, pp. 1110-1145
-
-
Cuccagna, S.1
-
16
-
-
10244243814
-
Spectra of positive and negative energies in the linearized NLS problem
-
1
-
Cuccagna S., Pelinovsky D. and Vougalter V. (2005). Spectra of positive and negative energies in the linearized NLS problem. Comm. Pure Appl. Math. 58(1): 1-29
-
(2005)
Comm. Pure Appl. Math.
, vol.58
, pp. 1-29
-
-
Cuccagna, S.1
Pelinovsky, D.2
Vougalter, V.3
-
17
-
-
33645070786
-
Numerical verification of a gap condition for a linearized NLS equation
-
Demanet L. and Schlag W. (2006). Numerical verification of a gap condition for a linearized NLS equation. Nonlinearity 19: 829-852
-
(2006)
Nonlinearity
, vol.19
, pp. 829-852
-
-
Demanet, L.1
Schlag, W.2
-
18
-
-
33645089826
-
Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II
-
Erdogan, B., Schlag, W.: Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II. To appear in Journal d'Analyse Mathematique, available at http://arxiv.org/list/math/0504585, 2005
-
(2005)
Journal d'Analyse Mathematique
-
-
Erdogan, B.1
Schlag, W.2
-
19
-
-
0039596758
-
A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations
-
1
-
Gesztesy F., Jones C.K.R.T., Latushkin Y. and Stanislavova M. (2000). A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations. Indiana Univ. Math. J. 49(1): 221-243
-
(2000)
Indiana Univ. Math. J.
, vol.49
, pp. 221-243
-
-
Gesztesy, F.1
Jones, C.K.R.T.2
Latushkin, Y.3
Stanislavova, M.4
-
20
-
-
36749114276
-
On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation
-
Glassey R.T. (1977). On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation. J. Math. Phys. 18: 1794-1797
-
(1977)
J. Math. Phys.
, vol.18
, pp. 1794-1797
-
-
Glassey, R.T.1
-
21
-
-
0000468151
-
Stability theory of solitary waves in the presence of symmetry. i
-
1
-
Grillakis M., Shatah J. and Strauss W. (1987). Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1): 160-197
-
(1987)
J. Funct. Anal.
, vol.74
, pp. 160-197
-
-
Grillakis, M.1
Shatah, J.2
Strauss, W.3
-
22
-
-
29444432472
-
Stability theory of solitary waves in the presence of symmetry. II
-
1
-
Grillakis M., Shatah J. and Strauss W. (1990). Stability theory of solitary waves in the presence of symmetry. II. J. Funct. Anal. 94(1): 308-348
-
(1990)
J. Funct. Anal.
, vol.94
, pp. 308-348
-
-
Grillakis, M.1
Shatah, J.2
Strauss, W.3
-
23
-
-
43349095912
-
Exponential decay of eigenfunctions and generalized eigenfunctions of a non self-adjoint matrix Schrödinger operator related to NLS
-
5
-
Hundertmark D. and Lee Y.-R. (2007). Exponential decay of eigenfunctions and generalized eigenfunctions of a non self-adjoint matrix Schrödinger operator related to NLS. Bull. London Math. Soc. 39(5): 709-720
-
(2007)
Bull. London Math. Soc.
, vol.39
, pp. 709-720
-
-
Hundertmark, D.1
Lee, Y.-R.2
-
24
-
-
0001138601
-
Endpoint Strichartz estimates
-
Keel M. and Tao T. (1998). Endpoint Strichartz estimates. Amer. Math. J. 120: 955-980
-
(1998)
Amer. Math. J.
, vol.120
, pp. 955-980
-
-
Keel, M.1
Tao, T.2
-
25
-
-
33750526878
-
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case
-
3
-
Kenig C. and Merle F. (2006). Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Inv. Math. 166(3): 645-675
-
(2006)
Inv. Math.
, vol.166
, pp. 645-675
-
-
Kenig, C.1
Merle, F.2
-
26
-
-
0000127687
-
Self-focusing of optical beams
-
Kelley P.L. (1965). Self-focusing of optical beams. Phys. Rev. Lett. 15: 1005-1008
-
(1965)
Phys. Rev. Lett.
, vol.15
, pp. 1005-1008
-
-
Kelley, P.L.1
-
27
-
-
33749459423
-
Stable manifolds for all monic supercritical NLS in one dimension
-
4
-
Krieger J. and Schlag W. (2006). Stable manifolds for all monic supercritical NLS in one dimension. J. AMS 19(4): 815-920
-
(2006)
J. AMS
, vol.19
, pp. 815-920
-
-
Krieger, J.1
Schlag, W.2
-
29
-
-
34250849129
-
On the focusing critical semi-linear wave equation
-
3
-
Krieger J. and Schlag W. (2007). On the focusing critical semi-linear wave equation. Amer. J. Math. 129(3): 843-913
-
(2007)
Amer. J. Math.
, vol.129
, pp. 843-913
-
-
Krieger, J.1
Schlag, W.2
-
32
-
-
84974001368
-
Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
-
2
-
Merle F. (1993). Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69(2): 427-454
-
(1993)
Duke Math. J.
, vol.69
, pp. 427-454
-
-
Merle, F.1
-
34
-
-
0035537074
-
On the formation of singularities in solutions of the critical nonlinear Schrödinger equation
-
4
-
Perelman G. (2001). On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré 2(4): 605-673
-
(2001)
Ann. Henri Poincaré
, vol.2
, pp. 605-673
-
-
Perelman, G.1
-
35
-
-
0001322178
-
Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations
-
2
-
Pillet C.A. and Wayne C.E. (1997). Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations. J. Diff. Eq. 141(2): 310-326
-
(1997)
J. Diff. Eq.
, vol.141
, pp. 310-326
-
-
Pillet, C.A.1
Wayne, C.E.2
-
36
-
-
1542508715
-
Time decay for solutions of Schrödinger equations with rough and time-dependent potentials
-
3
-
Rodnianski I. and Schlag W. (2004). Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3): 451-513
-
(2004)
Invent. Math.
, vol.155
, pp. 451-513
-
-
Rodnianski, I.1
Schlag, W.2
-
40
-
-
33750419023
-
Spectral theory and nonlinear partial differential equations: A survey
-
3
-
Schlag W. (2006). Spectral theory and nonlinear partial differential equations: a survey. Discrete Contin. Dyn. Syst. 15(3): 703-723
-
(2006)
Discrete Contin. Dyn. Syst.
, vol.15
, pp. 703-723
-
-
Schlag, W.1
-
41
-
-
0000301325
-
Multichannel nonlinear scattering for nonintegrable equations
-
Soffer A. and Weinstein M.I. (1990). Multichannel nonlinear scattering for nonintegrable equations. Comm. Math. Phys. 133: 119-146
-
(1990)
Comm. Math. Phys.
, vol.133
, pp. 119-146
-
-
Soffer, A.1
Weinstein, M.I.2
-
43
-
-
0004136765
-
-
Princeton University Press Princeton, NJ
-
Stein E. (1994). Harmonic Analysis. Princeton University Press, Princeton, NJ
-
(1994)
Harmonic Analysis
-
-
Stein, E.1
-
44
-
-
0003230098
-
The Nonlinear Schrödinger equation. Self-focusing and wave collapse
-
New York: Springer-Verlag
-
Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse. Applied Mathematical Sciences, 139, New York: Springer-Verlag, 1999
-
(1999)
Applied Mathematical Sciences
, vol.139
-
-
Sulem, C.1
Sulem, P.-L.2
-
45
-
-
0008341765
-
Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials
-
Providence, RI: Amer. Math. Soc.
-
Taylor, M.E.: Tools for PDE. Pseudodifferential operators, paradifferential operators, and layer potentials. Mathematical Surveys and Monographs, 81, Providence, RI: Amer. Math. Soc., 2000
-
(2000)
Mathematical Surveys and Monographs
, vol.81
-
-
Taylor, M.E.1
-
46
-
-
84990553584
-
Lyapunov stability of ground states of nonlinear dispersive equations
-
1
-
Weinstein M.I. (1986). Lyapunov stability of ground states of nonlinear dispersive equations. Comm. Pure Appl. Math. 39(1): 51-67
-
(1986)
Comm. Pure Appl. Math.
, vol.39
, pp. 51-67
-
-
Weinstein, M.I.1
-
47
-
-
0000686130
-
Modulational stability of ground states of nonlinear Schrödinger equations
-
3
-
Weinstein M.I. (1985). Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16(3): 472-491
-
(1985)
SIAM J. Math. Anal.
, vol.16
, pp. 472-491
-
-
Weinstein, M.I.1
-
48
-
-
24144491045
-
Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue
-
2
-
Yajima K. (2005). Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue. Commun. Math. Phys. 259(2): 475-509
-
(2005)
Commun. Math. Phys.
, vol.259
, pp. 475-509
-
-
Yajima, K.1
|