메뉴 건너뛰기




Volumn 6, Issue 11, 2010, Pages 5093-5103

Using Elman networks ensemble for protein subnuclear location prediction

Author keywords

Ampinpinlic PseAA amino acid composition; Elman networks ensemble; Jackknife test; Protein subnuclear location; Re substitution test

Indexed keywords

AMINO ACID COMPOSITIONS; AUTOMATED METHODS; BIOCHEMICAL PROCESS; ELMAN NETWORK; ENSEMBLE CLASSIFIERS; GENE PRODUCTS; GENE SEQUENCES; HIDDEN LAYERS; JACKKNIFE TEST; LOCATION PREDICTION; NODE NUMBER; NUCLEAR PROTEINS; PROTEIN SAMPLES; PROTEIN SEQUENCES; RE-SUBSTITUTION TEST;

EID: 78650335597     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (6)

References (35)
  • 2
    • 34249307315 scopus 로고    scopus 로고
    • Nuclear organization of tile genome and the potential for gene regulation
    • P. Fraser and W. Bickmore, Nuclear organization of tile genome and the potential for gene regulation, Nature, vol.447, no.7143, pp.413-417, 2007.
    • (2007) Nature , vol.447 , Issue.7143 , pp. 413-417
    • Fraser, P.1    Bickmore, W.2
  • 3
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • S. Hua and Z. Sun, Support vector machine approach for protein subcellular localization prediction, Bioinformatics, vol.17, no.8, pp.721-728, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.8 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 4
    • 16344396089 scopus 로고    scopus 로고
    • Predicting protein localization iii budding yeast
    • K. C. Chou and Y. D. Cai, Predicting protein localization iii budding yeast, Bioinformatics, vol.21, iiu.7, pp.944-950, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 944-950
    • Chou, K.C.1    Cai, Y.D.2
  • 5
    • 19544388127 scopus 로고    scopus 로고
    • PSLpred: Prediction of subcellular localization of bacterial proteins
    • M. Bhasin, A. Garg and G. P. Raghava, PSLpred: Prediction of subcellular localization of bacterial proteins, Bioinformatics, vol.21, no.10, pp.2522-2524, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2522-2524
    • Bhasin, M.1    Garg, A.2    Raghava, G.P.3
  • 6
    • 66149165877 scopus 로고    scopus 로고
    • RSLpred: An integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information
    • R. Kaundal and G. P. Raghava, RSLpred: An integrative system for predicting subcellular localization of rice proteins combining compositional and evolutionary information, Proteomics, vol.9, no.9, pp.Z32z1-Z3z12, 2009.
    • (2009) Proteomics , vol.9 , Issue.9
    • Kaundal, R.1    Raghava, G.P.2
  • 7
    • 67349230921 scopus 로고    scopus 로고
    • A novel representation for apoptosis protein subcellular localization prediction using support vector machine
    • L. Zhang, B. Liao, D. Li and W. Zhu, A novel representation for apoptosis protein subcellular localization prediction using support vector machine, Journal Theor. Biol, vol.259, no.2, pp.361-365, 2009.
    • (2009) Journal Theor. Biol , vol.259 , Issue.2 , pp. 361-365
    • Zhang, L.1    Liao, B.2    Li, D.3    Zhu, W.4
  • 8
    • 39449105071 scopus 로고    scopus 로고
    • Cell-pLoc: A package of web-servers for predicting subcellular localizatioTi of proteins in various organisms
    • K. C. Chou and H. B. Shen, Cell-pLoc: A package of web-servers for predicting subcellular localizatioTi of proteins in various organisms. Not. Protoc.. voL3. no.2. pp.153-162. 2008.
    • (2008) Not. Protoc , vol.3 , Issue.2 , pp. 153-162
    • Chou, K.C.1    Shen, H.B.2
  • 9
    • 46449089781 scopus 로고    scopus 로고
    • Protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis
    • J. M. Chang, C. Y. Su, A. Lo, H. S. Chiu, T. Y. Sung and W. L. Hsu, Protein subcellular localization prediction based on gapped-dipeptides and probabilistic latent semantic analysis, Proteins: Struct. Fund. Bioinf., vol.72, no.1, pp.693-710, 2008.
    • (2008) Proteins: Struct. Fund. Bioinf. , vol.72 , Issue.1 , pp. 693-710
    • Chang, J.M.1    Su, C.Y.2    Lo, A.3    Chiu, H.S.4    Sung, T.Y.5    Hsu, W.L.6
  • 10
    • 0037154983 scopus 로고    scopus 로고
    • The contribution of nuclear compartmentalization to gene regulation
    • M. Carmo-Fonseca, The contribution of nuclear compartmentalization to gene regulation, Cell, vol.108, no.4, pp.513-521, 2002.
    • (2002) Cell , vol.108 , Issue.4 , pp. 513-521
    • Carmo-Fonseca, M.1
  • 11
    • 26844455291 scopus 로고    scopus 로고
    • Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition
    • H. B. Shen and K. C. Chou, Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition, Biochem. Biophys. Res. Commun., vol.337, no.3, pp.752-756, 2005.
    • (2005) Biochem. Biophys. Res. Commun. , vol.337 , Issue.3 , pp. 752-756
    • Shen, H.B.1    Chou, K.C.2
  • 12
    • 29244465822 scopus 로고    scopus 로고
    • An SVM-based system for predicting protein subnuclear localizations
    • Z. Lei and Y. Dai, An SVM-based system for predicting protein subnuclear localizations, BMC Bioinformatics, vol.6, pp.291-298, 2005.
    • (2005) BMC Bioinformatics , vol.6 , pp. 291-298
    • Lei, Z.1    Dai, Y.2
  • 13
    • 33751393465 scopus 로고    scopus 로고
    • Assessing protein similarity with gene ontology and its use in subnuclear localization prediction
    • Z. Lei and Y. Dai, Assessing protein similarity with gene ontology and its use in subnuclear localization prediction, BMC Bioinformatics, vol.7, pp.49 1-450, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 491-450
    • Lei, Z.1    Dai, Y.2
  • 14
    • 34548458988 scopus 로고    scopus 로고
    • ProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features
    • W. L. Huang, C. W. Tung, H. L. Huang, S. F. Hwang and S. Y. Ho, ProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features, BioSyste ins, vol.90, no.2, pp.573-581, 2007.
    • (2007) BioSysteins , vol.90 , Issue.2 , pp. 573-581
    • Huang, W.L.1    Tung, C.W.2    Huang, H.L.3    Hwang, S.F.4    Ho, S.Y.5
  • 15
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo-amino acid composition
    • K. C. Chou, Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins: Struct. Func. Genet., vol.43, no.3, pp.246-255, 2001.
    • (2001) Proteins: Struct. Func. Genet. , vol.43 , Issue.3 , pp. 246-255
    • Chou, K.C.1
  • 16
    • 36448952353 scopus 로고    scopus 로고
    • Nuc-pLoc: A new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM
    • H. B. Shen and K. C. Chou, Nuc-pLoc: A new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM, Protein Eng. Des. Sd., vol.20, no.11, pp.561-567, 2007.
    • (2007) Protein Eng. Des. Sd. , vol.20 , Issue.11 , pp. 561-567
    • Shen, H.B.1    Chou, K.C.2
  • 17
    • 34447321808 scopus 로고    scopus 로고
    • Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM
    • P. Mundra, M. Kumar, K. K. Kumar, V. K. Jayaraman and B. D. Kulkarni, Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM, Pattern Recognition Letters, vol.28, no.13, pp.1610-1615, 2007.
    • (2007) Pattern Recognition Letters , vol.28 , Issue.13 , pp. 1610-1615
    • Mundra, P.1    Kumar, M.2    Kumar, K.K.3    Jayaraman, V.K.4    Kulkarni, B.D.5
  • 18
    • 38149120433 scopus 로고    scopus 로고
    • Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach
    • F. M. Li and Q. Z. Li, Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach, Amino Acids, vol.34, no.1, pp.119-125, 2008.
    • (2008) Amino Acids , vol.34 , Issue.1 , pp. 119-125
    • Li, F.M.1    Li, Q.Z.2
  • 19
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Z. H. Zhou, J. Wu and W. Tang, Ensembling neural networks: Many could be better than all, Artificial Intelligence, vol.137, no.1-2, pp.239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.2    Tang, W.3
  • 20
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • K. C. Chou, Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, vol.21, no.1, pp.10-19, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 10-19
    • Chou, K.C.1
  • 21
    • 18344391868 scopus 로고    scopus 로고
    • Prediction of membrane protein types by incorporating amphipathic effects
    • K. C. Chou and Y. D. Cai, Prediction of membrane protein types by incorporating amphipathic effects, J. Chem. Inf. Model, vol.45, no.2, pp.407-413, 2005.
    • (2005) J. Chem. Inf. Model , vol.45 , Issue.2 , pp. 413-407
    • Chou, K.C.1    Cai, Y.D.2
  • 22
    • 67749108064 scopus 로고    scopus 로고
    • Detection and recognition of vehicle license plates using template matching, genetic algorithms and neural networks
    • Karungaru, M. Fukumi and N. Akamatsu, Detection and recognition of vehicle license plates using template matching, genetic algorithms and neural networks, International Journal of Innovative Computing, Information and Control, vol.5, no.7, pp.1975-1985, 2009.
    • (2009) International Journal of Innovative Computing, Information and Control , vol.5 , Issue.7 , pp. 1975-1985
    • Karungaru, S.1    Fukumi, M.2    Akamatsu, N.3
  • 24
    • 0022631926 scopus 로고
    • The folding type of a protein is relevant to tile amino acid coliipositioll
    • H. Nakasinma, K. Nisinkawa and T. Ooi, The folding type of a protein is relevant to tile amino acid coliipositioll, J. Biochem., vol.99, ho.1, pp.152-162, 1986.
    • (1986) J. Biochem. , vol.99 , Issue.1 , pp. 152-162
    • Nakasinma, H.1    Nisinkawa, K.2    Ooi, T.3
  • 25
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, Finding structure in time, Cognitive Sri., vol.14, no.2, pp.179-211, 1990.
    • (1990) Cognitive Sri. , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 27
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. E. Schapire, The strength of weak learnability, Machine Learning, vol.5, no.2, pp.197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 29
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. Kuncheva and C. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Machine Learning, vol.51, no.2, pp.181-207, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 30
    • 0003637791 scopus 로고
    • A genetic algorithm for function optimization: A matlab implementation
    • North Carolina State University, Raleigh
    • C. R. Hoiick, J. A. Joines and M. G. Kay, A genetic algorithm for function optimization: A matlab implementation, Technical Report: NCS U-IE- TR-95-09, North Carolina State University, Raleigh, 1995.
    • (1995) Technical Report: NCSU-IE-TR-95-09
    • Hoiick, C.R.1    Joines, J.A.2    Kay, M.G.3
  • 31
    • 0029157083 scopus 로고
    • Prediction of protein structural classes
    • K. C. Chou and C. T. Zhang, Prediction of protein structural classes, Crit. Rev. Biochemn. Mol. Biol., vol.30, no.4, pp.275-349, 1995.
    • (1995) Crit. Rev. Biochemn. Mol. Biol. , vol.30 , Issue.4 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 32
    • 0031588694 scopus 로고    scopus 로고
    • Relation between amino acid composition and cellular location of proteins, J
    • J. Cedano, P. Aloy, J. A. Perez-Pons and E. Querol, Relation between amino acid composition and cellular location of proteins, J. Mol. Biol., vol.266, no.3, pp.594-600, 1997.
    • (1997) Mol. Biol. , vol.266 , Issue.3 , pp. 594-600
    • Cedano, J.1    Aloy, P.2    Perez-Pons, J.A.3    Querol, E.4
  • 34
    • 77953893378 scopus 로고    scopus 로고
    • Evolutionary algorithm-based RBF neural network for oil price forecasting
    • R. J. Kuo, Evolutionary algorithm-based RBF neural network for oil price forecasting, ICIC Eipress Letters, vol.3, no.3, pp.701-705, 2009.
    • (2009) ICIC Eipress Letters , vol.3 , Issue.3 , pp. 701-705
    • Kuo, R.J.1
  • 35
    • 33847401462 scopus 로고    scopus 로고
    • Margin-based active learning for LVQ networks
    • F. M. Schleif, B. Hammer and T. Villmann, Margin-based active learning for LVQ networks, Ne rocomnp uting, vol.70, no.7-9, pp.1215-1224, 2007.
    • (2007) Ne Rocomnp Uting , vol.70 , Issue.7-9 , pp. 1215-1224
    • Schleif, F.M.1    Hammer, B.2    Villmann, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.