-
1
-
-
0030636546
-
Mercury in the food web: Accumulation and transfer mechanisms
-
A. Boubou, and F. Ribeyre Mercury in the food web: Accumulation and transfer mechanisms A. sigrel, H. Sigrel, Metal Ions in Biological Systems 1998 Marcel Dekker New York 289 319
-
(1998)
Metal Ions in Biological Systems
, pp. 289-319
-
-
Boubou, A.1
Ribeyre, F.2
-
3
-
-
84883258210
-
-
University of Georgia
-
Billard, L., Chouakria-Douzal, A., Diday, E., 2007. Symbolic Principal Components for Interval-Valued Observations. Technical report, University of Georgia.
-
(2007)
Symbolic Principal Components for Interval-Valued Observations. Technical Report
-
-
Billard, L.1
Chouakria-Douzal, A.2
Diday, E.3
-
4
-
-
77956385327
-
Some analyses of interval data
-
L. Billard Some analyses of interval data J. Comput. Inform. Technol. CIT 16 2008 225 233
-
(2008)
J. Comput. Inform. Technol.
, vol.16
, pp. 225-233
-
-
Billard, L.1
-
5
-
-
0039957466
-
Extension de l'analyse en composantes principales des données de type intervalle
-
P. Cazes, A. Chouakria, E. Diday, and S. Schektman Extension de l'analyse en composantes principales des données de type intervalle Rev. Statist. Appl. XLV 3 1997 5 24
-
(1997)
Rev. Statist. Appl.
, vol.45
, Issue.3
, pp. 5-24
-
-
Cazes, P.1
Chouakria, A.2
Diday, E.3
Schektman, S.4
-
6
-
-
33750188844
-
An Hausdorff distance between hyper-rectangles for clustering interval data
-
Banks, D., et al. (Eds.) Springer
-
Chavent, M., 2004. An Hausdorff distance between hyper-rectangles for clustering interval data. In: Banks, D., et al. (Eds.), Classification, Clustering and Data Mining Application, Proc. IFCS'04. Springer, pp. 333-340.
-
(2004)
Classification, Clustering and Data Mining Application, Proc. IFCS'04
, pp. 333-340
-
-
Chavent, M.1
-
12
-
-
0026831106
-
Symbolic clustering using a new similarity measure
-
K.C. Gowda, and E. Diday Symbolic clustering using a new similarity measure IEEE Trans. Systems Man Cybernet. 22 1992 368 378
-
(1992)
IEEE Trans. Systems Man Cybernet.
, vol.22
, pp. 368-378
-
-
Gowda, K.C.1
Diday, E.2
-
13
-
-
0036161259
-
Gene Selection for Cancer Classification using Support Vector Machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene Selection for Cancer Classification using Support Vector Machines Machine Learn. 46 2002 389 422
-
(2002)
Machine Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
14
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Machine Learn. Res. 3 2003 1157 1182
-
(2003)
J. Machine Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
15
-
-
79953842056
-
Margin analysis of the lvq algorithm
-
Grammer, K., Gilad-Bachrach, R., Navot, A., Tishby, N., 2002. Margin analysis of the lvq algorithm. In: Proc. 17th Internat. Conf. on Neural Information Processing Systems.
-
(2002)
Proc. 17th Internat. Conf. on Neural Information Processing Systems
-
-
Grammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, N.4
-
16
-
-
33746426699
-
Margin Based feature selection-theory and algorithms
-
ACM Press
-
Gilad-Bachrach, R., Navot, A., Tishby, N., 2004. Margin Based feature selection-theory and algorithms. In: Proc. 21st Internat. Conf. on Machine Learning. ACM Press, pp. 43-50.
-
(2004)
Proc. 21st Internat. Conf. on Machine Learning
, pp. 43-50
-
-
Gilad-Bachrach, R.1
Navot, A.2
Tishby, N.3
-
18
-
-
42949087870
-
Mixed feature selection based on granulation and approximation
-
Q.H. Hu, J.F. Liu, and D.R. Yu Mixed feature selection based on granulation and approximation Knowledge-Based Systems 21 2008 294 304
-
(2008)
Knowledge-Based Systems
, vol.21
, pp. 294-304
-
-
Hu, Q.H.1
Liu, J.F.2
Yu, D.R.3
-
19
-
-
46749140199
-
Neighborhood rough set based heterogeneous feature subset selection
-
Q.H. Hu, J.F. Liu, and D.R. Yu Neighborhood rough set based heterogeneous feature subset selection Inform. Sci. 178 18 2008 3577 3594
-
(2008)
Inform. Sci.
, vol.178
, Issue.18
, pp. 3577-3594
-
-
Hu, Q.H.1
Liu, J.F.2
Yu, D.R.3
-
22
-
-
0000210258
-
Nouvelles recherches sur la distribution florale
-
P. Jaccard Nouvelles recherches sur la distribution florale Bull. Soc. Sci. Nat. 44 1908 223
-
(1908)
Bull. Soc. Sci. Nat.
, Issue.44
, pp. 223
-
-
Jaccard, P.1
-
24
-
-
34547376525
-
Exploitation of multivalued type proximity for symbolic feature selection
-
Kiranagi, B.B., Guru, D.S., Ichino, M., 2007. Exploitation of multivalued type proximity for symbolic feature selection. In: Proc. Internat. Conf. on Computing: Theory and Applications, pp. 320-324.
-
(2007)
Proc. Internat. Conf. on Computing: Theory and Applications
, pp. 320-324
-
-
Kiranagi, B.B.1
Guru, D.S.2
Ichino, M.3
-
25
-
-
0031381525
-
Wrapper for feature subset selection
-
R. Kohavi, and G.H. John Wrapper for feature subset selection Artif. Intell. 97 1997 273 324
-
(1997)
Artif. Intell.
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
26
-
-
0034400501
-
Principal component analysis of interval data: A symbolic data analysis approach
-
N.C. Lauro, and F. Palumbo Principal component analysis of interval data: a symbolic data analysis approach Comput. Statist. 15 1 2000 73 87
-
(2000)
Comput. Statist.
, vol.15
, Issue.1
, pp. 73-87
-
-
Lauro, N.C.1
Palumbo, F.2
-
27
-
-
34548033746
-
Fuzzy feature selection based on min-max learning rule and extension matrix
-
Y. Li, and Z.F. Wu Fuzzy feature selection based on min-max learning rule and extension matrix Pattern Recognition 41 2008 217 226
-
(2008)
Pattern Recognition
, vol.41
, pp. 217-226
-
-
Li, Y.1
Wu, Z.F.2
-
28
-
-
0041995203
-
A generalized Kernel approach to dissimilarity based classification
-
E. Pkalska, P. Paclík, and R.P.W. Duin A generalized Kernel approach to dissimilarity based classification J. Machine Learn. Res. 5 2001 175 211
-
(2001)
J. Machine Learn. Res.
, vol.5
, pp. 175-211
-
-
Pkalska, E.1
Paclík, P.2
Duin, R.P.W.3
-
29
-
-
0036604999
-
Dissimilarity representations allow for building good classifiers
-
E. Pkalska, and R.P.W. Duin Dissimilarity representations allow for building good classifiers Pattern Recognition Lett. 23 8 2002 943 956
-
(2002)
Pattern Recognition Lett.
, vol.23
, Issue.8
, pp. 943-956
-
-
Pkalska, E.1
Duin, R.P.W.2
-
30
-
-
77953027264
-
Validation and reconstruction of flow meter data in the Barcelona water distribution network
-
J. Quevedo, V. Puig, G. Cembrano, J. Blanch, J. Aguilar, D. Saporta, G. Benito, M. Hedo, and A. Molina Validation and reconstruction of flow meter data in the Barcelona water distribution network J. Control Eng. Practice 18 2010 640 651
-
(2010)
J. Control Eng. Practice
, vol.18
, pp. 640-651
-
-
Quevedo, J.1
Puig, V.2
Cembrano, G.3
Blanch, J.4
Aguilar, J.5
Saporta, D.6
Benito, G.7
Hedo, M.8
Molina, A.9
-
31
-
-
70350777128
-
Symbolic kernel discriminant analysis
-
J.P. Rasson, and S. Lissoir Symbolic kernel discriminant analysis H.H. Bock, E. Diday, Analysis Symbolic Data 2000 Springer Heidelberg 240 244
-
(2000)
Analysis Symbolic Data
, pp. 240-244
-
-
Rasson, J.P.1
Lissoir, S.2
-
32
-
-
33746903410
-
Unifying error-correcting and output-code adaboost through the margin concepts
-
Sun, Y., Todorovic, S., Li, J., Wu, D., 2005. Unifying error-correcting and output-code adaboost through the margin concepts. In: Proc. 22nd Internat. Conf. on Machine Learning, pp. 872-879.
-
(2005)
Proc. 22nd Internat. Conf. on Machine Learning
, pp. 872-879
-
-
Sun, Y.1
Todorovic, S.2
Li, J.3
Wu, D.4
-
33
-
-
84883699144
-
Dependency-based feature selection for clustering symbolic data
-
L. Talavera Dependency-based feature selection for clustering symbolic data Intell. Data Anal. 4 2000 19 28
-
(2000)
Intell. Data Anal.
, vol.4
, pp. 19-28
-
-
Talavera, L.1
-
35
-
-
84898948710
-
Feature selection for SVMs
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, and V. Vapnik Feature selection for SVMs Adv. Neural Inform. Process. Systems 2001 668 674
-
(2001)
Adv. Neural Inform. Process. Systems
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Vapnik, V.5
|