메뉴 건너뛰기




Volumn 32, Issue 4, 2011, Pages 578-585

Similarity-margin based feature selection for symbolic interval data

Author keywords

Classification; Feature selection; Interval data; Margin; Optimization; Symbolic data analysis

Indexed keywords

CLASSIFICATION; FEATURE SELECTION; INTERVAL DATA; MARGIN; SYMBOLIC DATA ANALYSIS;

EID: 78650330074     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2010.11.018     Document Type: Article
Times cited : (45)

References (35)
  • 1
    • 0030636546 scopus 로고    scopus 로고
    • Mercury in the food web: Accumulation and transfer mechanisms
    • A. Boubou, and F. Ribeyre Mercury in the food web: Accumulation and transfer mechanisms A. sigrel, H. Sigrel, Metal Ions in Biological Systems 1998 Marcel Dekker New York 289 319
    • (1998) Metal Ions in Biological Systems , pp. 289-319
    • Boubou, A.1    Ribeyre, F.2
  • 4
    • 77956385327 scopus 로고    scopus 로고
    • Some analyses of interval data
    • L. Billard Some analyses of interval data J. Comput. Inform. Technol. CIT 16 2008 225 233
    • (2008) J. Comput. Inform. Technol. , vol.16 , pp. 225-233
    • Billard, L.1
  • 5
    • 0039957466 scopus 로고    scopus 로고
    • Extension de l'analyse en composantes principales des données de type intervalle
    • P. Cazes, A. Chouakria, E. Diday, and S. Schektman Extension de l'analyse en composantes principales des données de type intervalle Rev. Statist. Appl. XLV 3 1997 5 24
    • (1997) Rev. Statist. Appl. , vol.45 , Issue.3 , pp. 5-24
    • Cazes, P.1    Chouakria, A.2    Diday, E.3    Schektman, S.4
  • 6
    • 33750188844 scopus 로고    scopus 로고
    • An Hausdorff distance between hyper-rectangles for clustering interval data
    • Banks, D., et al. (Eds.) Springer
    • Chavent, M., 2004. An Hausdorff distance between hyper-rectangles for clustering interval data. In: Banks, D., et al. (Eds.), Classification, Clustering and Data Mining Application, Proc. IFCS'04. Springer, pp. 333-340.
    • (2004) Classification, Clustering and Data Mining Application, Proc. IFCS'04 , pp. 333-340
    • Chavent, M.1
  • 12
    • 0026831106 scopus 로고
    • Symbolic clustering using a new similarity measure
    • K.C. Gowda, and E. Diday Symbolic clustering using a new similarity measure IEEE Trans. Systems Man Cybernet. 22 1992 368 378
    • (1992) IEEE Trans. Systems Man Cybernet. , vol.22 , pp. 368-378
    • Gowda, K.C.1    Diday, E.2
  • 13
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Gene Selection for Cancer Classification using Support Vector Machines Machine Learn. 46 2002 389 422
    • (2002) Machine Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Machine Learn. Res. 3 2003 1157 1182
    • (2003) J. Machine Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 18
    • 42949087870 scopus 로고    scopus 로고
    • Mixed feature selection based on granulation and approximation
    • Q.H. Hu, J.F. Liu, and D.R. Yu Mixed feature selection based on granulation and approximation Knowledge-Based Systems 21 2008 294 304
    • (2008) Knowledge-Based Systems , vol.21 , pp. 294-304
    • Hu, Q.H.1    Liu, J.F.2    Yu, D.R.3
  • 19
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Q.H. Hu, J.F. Liu, and D.R. Yu Neighborhood rough set based heterogeneous feature subset selection Inform. Sci. 178 18 2008 3577 3594
    • (2008) Inform. Sci. , vol.178 , Issue.18 , pp. 3577-3594
    • Hu, Q.H.1    Liu, J.F.2    Yu, D.R.3
  • 22
    • 0000210258 scopus 로고
    • Nouvelles recherches sur la distribution florale
    • P. Jaccard Nouvelles recherches sur la distribution florale Bull. Soc. Sci. Nat. 44 1908 223
    • (1908) Bull. Soc. Sci. Nat. , Issue.44 , pp. 223
    • Jaccard, P.1
  • 25
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • R. Kohavi, and G.H. John Wrapper for feature subset selection Artif. Intell. 97 1997 273 324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 26
    • 0034400501 scopus 로고    scopus 로고
    • Principal component analysis of interval data: A symbolic data analysis approach
    • N.C. Lauro, and F. Palumbo Principal component analysis of interval data: a symbolic data analysis approach Comput. Statist. 15 1 2000 73 87
    • (2000) Comput. Statist. , vol.15 , Issue.1 , pp. 73-87
    • Lauro, N.C.1    Palumbo, F.2
  • 27
    • 34548033746 scopus 로고    scopus 로고
    • Fuzzy feature selection based on min-max learning rule and extension matrix
    • Y. Li, and Z.F. Wu Fuzzy feature selection based on min-max learning rule and extension matrix Pattern Recognition 41 2008 217 226
    • (2008) Pattern Recognition , vol.41 , pp. 217-226
    • Li, Y.1    Wu, Z.F.2
  • 28
    • 0041995203 scopus 로고    scopus 로고
    • A generalized Kernel approach to dissimilarity based classification
    • E. Pkalska, P. Paclík, and R.P.W. Duin A generalized Kernel approach to dissimilarity based classification J. Machine Learn. Res. 5 2001 175 211
    • (2001) J. Machine Learn. Res. , vol.5 , pp. 175-211
    • Pkalska, E.1    Paclík, P.2    Duin, R.P.W.3
  • 29
    • 0036604999 scopus 로고    scopus 로고
    • Dissimilarity representations allow for building good classifiers
    • E. Pkalska, and R.P.W. Duin Dissimilarity representations allow for building good classifiers Pattern Recognition Lett. 23 8 2002 943 956
    • (2002) Pattern Recognition Lett. , vol.23 , Issue.8 , pp. 943-956
    • Pkalska, E.1    Duin, R.P.W.2
  • 31
    • 70350777128 scopus 로고    scopus 로고
    • Symbolic kernel discriminant analysis
    • J.P. Rasson, and S. Lissoir Symbolic kernel discriminant analysis H.H. Bock, E. Diday, Analysis Symbolic Data 2000 Springer Heidelberg 240 244
    • (2000) Analysis Symbolic Data , pp. 240-244
    • Rasson, J.P.1    Lissoir, S.2
  • 33
    • 84883699144 scopus 로고    scopus 로고
    • Dependency-based feature selection for clustering symbolic data
    • L. Talavera Dependency-based feature selection for clustering symbolic data Intell. Data Anal. 4 2000 19 28
    • (2000) Intell. Data Anal. , vol.4 , pp. 19-28
    • Talavera, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.