메뉴 건너뛰기




Volumn 73, Issue 16-18, 2010, Pages 2971-2979

Scene classification using multiple features in a two-stage probabilistic classification framework

Author keywords

Fourier transform; Gabor filter; Global feature; Gray level co occurrence matrix; Scene classification

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION METHODS; CO-OCCURRENCE-MATRIX; DATA SETS; ENERGY FEATURE; FILTERED IMAGES; FREQUENCY DOMAINS; GABOR FILTER; GLOBAL FEATURE; GRAY LEVEL CO-OCCURRENCE MATRIX; HIGHER DIMENSIONS; LINEAR COMBINATIONS; MULTIPLE FEATURES; NATURAL SCENES; POSTERIOR PROBABILITY; PROBABILISTIC CLASSIFICATION; PROBABILISTIC OUTPUT; REAL SCENES; SCENE CLASSIFICATION; TEXTURAL CHARACTERISTIC; TWO STAGE;

EID: 78650175082     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.07.004     Document Type: Article
Times cited : (13)

References (42)
  • 1
    • 46449093451 scopus 로고    scopus 로고
    • MetaXa: context and content-driven metadata enhancement for personal photo books, in: Lecture Notes in Computer Science,
    • S. Boll, P. Sandhaus, A. Scherp, S. Thieme, MetaXa: context and content-driven metadata enhancement for personal photo books, in: Lecture Notes in Computer Science, vol. 4351, 2006, pp. 332-343.
    • (2006) , vol.4351 , pp. 332-343
    • Boll, S.1    Sandhaus, P.2    Scherp, A.3    Thieme, S.4
  • 2
    • 21144451612 scopus 로고    scopus 로고
    • Learning region-based image retrieval, in: Proceedings of the International Conference on Image and Video Retrieval,
    • F. Jing, M. Li, L. Zhang, H. Zhang, B. Zhang, Learning region-based image retrieval, in: Proceedings of the International Conference on Image and Video Retrieval, 2003, pp. 206-215.
    • (2003) , pp. 206-215
    • Jing, F.1    Li, M.2    Zhang, L.3    Zhang, H.4    Zhang, B.5
  • 3
    • 34047192082 scopus 로고    scopus 로고
    • Which is the best way to organize/classify images by content?
    • Bosch A., Muñoz X., Martí R. Which is the best way to organize/classify images by content?. Image and Vision Computing 2007, 25:778-791.
    • (2007) Image and Vision Computing , vol.25 , pp. 778-791
    • Bosch, A.1    Muñoz, X.2    Martí, R.3
  • 4
    • 0036062471 scopus 로고    scopus 로고
    • Recognizing the gist of a visual scene: possible perceptual and neural mechanisms
    • Rasche C., Koch C. Recognizing the gist of a visual scene: possible perceptual and neural mechanisms. Neurocomputing 2002, 44:979-984.
    • (2002) Neurocomputing , vol.44 , pp. 979-984
    • Rasche, C.1    Koch, C.2
  • 5
    • 2542444504 scopus 로고    scopus 로고
    • Comparing animal and face processing in the context of natural scenes using a fast categorization task
    • Rousselet G.A., Mace M.J.M., Fabre-Thorpe M. Comparing animal and face processing in the context of natural scenes using a fast categorization task. Neurocomputing 2004, 783-791.
    • (2004) Neurocomputing , pp. 783-791
    • Rousselet, G.A.1    Mace, M.J.M.2    Fabre-Thorpe, M.3
  • 6
    • 0030175470 scopus 로고    scopus 로고
    • A neural network for scene segmentation by temporal coding
    • Stoecker M., Reitboeck H.J., Eckhorn R. A neural network for scene segmentation by temporal coding. Neurocomputing 1996, 11:123-134.
    • (1996) Neurocomputing , vol.11 , pp. 123-134
    • Stoecker, M.1    Reitboeck, H.J.2    Eckhorn, R.3
  • 7
    • 33745858268 scopus 로고    scopus 로고
    • Scene classification via pLSA, in: Proceedings of the European Conference on Computer Vision,
    • A. Bosch, A. Zisserman, X. Muñoz, Scene classification via pLSA, in: Proceedings of the European Conference on Computer Vision, 2006, pp. 517-530.
    • (2006) , pp. 517-530
    • Bosch, A.1    Zisserman, A.2    Muñoz, X.3
  • 8
    • 56749102464 scopus 로고    scopus 로고
    • Kernel codebooks for scene categorization, in: Proceedings of the 10th European Conference on Computer Vision:
    • J.C. van Gemert, J.-M. Geusebroek, C.J. Veenman, A.W.M. Smeulders, Kernel codebooks for scene categorization, in: Proceedings of the 10th European Conference on Computer Vision: Part III, 2008, pp. 696-709.
    • (2008) , Issue.PART 3 , pp. 696-709
    • van Gemert, J.C.1    Geusebroek, J.-M.2    Veenman, C.J.3    Smeulders, A.W.M.4
  • 10
    • 20444410793 scopus 로고    scopus 로고
    • Learning semantic scene models from observing activity in visual surveillance
    • Makris D., Ellis T. Learning semantic scene models from observing activity in visual surveillance. IEEE Transactions on Systems, Man, and Cybernetics-Part B 2005, 35(3):397-408.
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics-Part B , vol.35 , Issue.3 , pp. 397-408
    • Makris, D.1    Ellis, T.2
  • 12
    • 0036608921 scopus 로고    scopus 로고
    • Scene analysis by integrating primitive segmentation and associative memory
    • Wang D., Liu X. Scene analysis by integrating primitive segmentation and associative memory. IEEE Transactions on Systems, Man, and Cybernetics-Part B 2002, 32(2):254-268.
    • (2002) IEEE Transactions on Systems, Man, and Cybernetics-Part B , vol.32 , Issue.2 , pp. 254-268
    • Wang, D.1    Liu, X.2
  • 13
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: a holistic representation of the spatial envelope
    • Oliva A., Torralba A. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision 2001, 42(3):145-175.
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 14
    • 22844444560 scopus 로고    scopus 로고
    • Natural scene classification using overcomplete ICA
    • Luo J., Boutell M. Natural scene classification using overcomplete ICA. Pattern Recognition 2005, 38:1507-1519.
    • (2005) Pattern Recognition , vol.38 , pp. 1507-1519
    • Luo, J.1    Boutell, M.2
  • 17
    • 21244464429 scopus 로고    scopus 로고
    • Design-based texture feature fusion using Gabor filters and co-occurrence probabilities
    • Clausi D.A., Huang D. Design-based texture feature fusion using Gabor filters and co-occurrence probabilities. IEEE Transactions on Image Processing 2005, 14(7):925-936.
    • (2005) IEEE Transactions on Image Processing , vol.14 , Issue.7 , pp. 925-936
    • Clausi, D.A.1    Huang, D.2
  • 18
    • 0343932660 scopus 로고    scopus 로고
    • An efficient method for texture defect detection: sub-band domain co-occurrence matrices
    • Latif-Ameta A., Ertuzuna A., Ercilb A. An efficient method for texture defect detection: sub-band domain co-occurrence matrices. Image and Vision Computing 2000, 18:543-553.
    • (2000) Image and Vision Computing , vol.18 , pp. 543-553
    • Latif-Ameta, A.1    Ertuzuna, A.2    Ercilb, A.3
  • 19
    • 34547273264 scopus 로고    scopus 로고
    • Co-occurrence features of multi-scale directional filter bank for texture characterization, in: Proceedings of the IEEE International Symposium on Circuits and Systems,
    • K.O. Cheng, N.F. Law, W.C. Siu, Co-occurrence features of multi-scale directional filter bank for texture characterization, in: Proceedings of the IEEE International Symposium on Circuits and Systems, 2006, pp. 5499-5502.
    • (2006) , pp. 5499-5502
    • Cheng, K.O.1    Law, N.F.2    Siu, W.C.3
  • 21
    • 0032584920 scopus 로고    scopus 로고
    • A method of combining multiple probabilistic classifiers through soft competition on different feature sets
    • Chen K., Chi H. A method of combining multiple probabilistic classifiers through soft competition on different feature sets. Neurocomputing 1998, 20:227-252.
    • (1998) Neurocomputing , vol.20 , pp. 227-252
    • Chen, K.1    Chi, H.2
  • 22
    • 33749250604 scopus 로고    scopus 로고
    • Experimental studies for the comparison of classifier combination methods
    • Sohn S.Y., Shin H.W. Experimental studies for the comparison of classifier combination methods. Pattern Recognition 2007, 40:33-40.
    • (2007) Pattern Recognition , vol.40 , pp. 33-40
    • Sohn, S.Y.1    Shin, H.W.2
  • 23
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., Gabrys B. Classifier selection for majority voting. Information Fusion 2005, 6:63-81.
    • (2005) Information Fusion , vol.6 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 27
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges J.C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998, 2:1-43.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 1-43
    • Burges, J.C.1
  • 29
    • 29144474463 scopus 로고    scopus 로고
    • An experimental bias-variance analysis of SVM ensembles based on resampling techniques
    • Valentini G. An experimental bias-variance analysis of SVM ensembles based on resampling techniques. IEEE Transactions on Systems, Man, and Cybernetics-Part B 2005, 35(6):1252-1271.
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics-Part B , vol.35 , Issue.6 , pp. 1252-1271
    • Valentini, G.1
  • 30
    • 5044230039 scopus 로고    scopus 로고
    • A computationally efficient approach to indoor/outdoor scene classification, in: 16th International Conference on Pattern Recognition,
    • N. Serrano, A. Savakis, J. Luo, A computationally efficient approach to indoor/outdoor scene classification, in: 16th International Conference on Pattern Recognition, 2002, vol. 14, no. 4, pp. 146-149.
    • (2002) , vol.14 , Issue.4 , pp. 146-149
    • Serrano N.Savakis A.Luo, J.1
  • 31
    • 78650169194 scopus 로고    scopus 로고
    • http://people.csail.mit.edu/torralba/code/spatialenvelope/.
  • 32
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods, in: A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances in Large Margin Classifiers, Cambridge, MA,
    • J. Platt, Probabilistic outputs for support vector machines and comparison to regularized likelihood methods, in: A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances in Large Margin Classifiers, Cambridge, MA, 2000, pp. 61-74.
    • (2000) , pp. 61-74
    • Platt, J.1
  • 33
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • Lin H.T., Lin C.J., Weng R.C. A note on Platt's probabilistic outputs for support vector machines. Machine Learning 2007, 68(3):267-276.
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 267-276
    • Lin, H.T.1    Lin, C.J.2    Weng, R.C.3
  • 34
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C.W., Lin C.J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 2002, 13(2):415-445.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.2 , pp. 415-445
    • Hsu, C.W.1    Lin, C.J.2
  • 35
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T.F., Lin C.J., Weng R.C. Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 2004, 5:975-1005.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 975-1005
    • Wu, T.F.1    Lin, C.J.2    Weng, R.C.3
  • 36
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao D.C., Tang X.O., Li X.L., Wu X.D. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 2006, 28(7):1088-1098.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1098
    • Tao, D.C.1    Tang, X.O.2    Li, X.L.3    Wu, X.D.4
  • 37
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA,
    • L. Fei-Fei, P. Perona, A bayesian hierarchical model for learning natural scene categories, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, Washington, DC, USA, 2005, pp. 524-531.
    • (2005) , vol.2 , pp. 524-513
    • Fei-Fei, L.1    Perona, P.2
  • 38
    • 0041438825 scopus 로고    scopus 로고
    • A sparse texture representation using affine-invariant regions, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison, Wisconsin, June
    • S. Lazebnik, C. Schmid, J. Ponce, A sparse texture representation using affine-invariant regions, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, Madison, Wisconsin, June 2003, pp. 319-324.
    • (2003) , vol.2 , pp. 319-324
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 39
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE Conference on Computer Vision and Pattern Recognition,
    • S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid matching for recognizing natural scene categories, in: IEEE Conference on Computer Vision and Pattern Recognition, 2006, vol. 2, pp. 2169-2178.
    • (2006) , vol.2 , pp. 2169-2179
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 40
    • 78650169764 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines, Software available at
    • C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, 2001, Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
    • (2001)
    • Chang, C.C.1    Lin, C.J.2
  • 41
    • 50649113682 scopus 로고    scopus 로고
    • Learning multiscale representations of natural scenes using Dirichlet processes, in: Proceedings of the International Conference on Computer Vision, Rio de Janeiro,
    • J. Kivinen, E. Sudderth, M. Jordan, Learning multiscale representations of natural scenes using Dirichlet processes, in: Proceedings of the International Conference on Computer Vision, Rio de Janeiro, 2007, pp. 1-8.
    • (2007) , pp. 1-8
    • Kivinen, J.1    Sudderth, E.2    Jordan, M.3
  • 42
    • 33745827782 scopus 로고    scopus 로고
    • SURF: speeded up robust features, in: Proceedings of the 9th European Conference on Computer Vision, Springer Lecture Notes in Computer Science,
    • H. Bay, T. Tuytelaars, L. Van Gool, SURF: speeded up robust features, in: Proceedings of the 9th European Conference on Computer Vision, Springer Lecture Notes in Computer Science, vol. 3951, part 1, 2006, pp. 404-417.
    • (2006) , vol.3951 , Issue.PART 1 , pp. 404-417
    • Bay, H.1    Tuytelaars T.Van Gool, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.