-
1
-
-
0001582531
-
Logconcavity versus logconvexity: A complete characterization
-
MR1637480
-
AN, M. Y. (1998). Logconcavity versus logconvexity: A complete characterization. J. Econom. Theory 80 350-369. MR1637480
-
(1998)
J. Econom. Theory
, vol.80
, pp. 350-369
-
-
An, M.Y.1
-
2
-
-
0000553335
-
R-convex functions
-
MR0301151
-
AVRIEL, M. (1972). r-convex functions. Math. Program. 2 309-323. MR0301151
-
(1972)
Math. Program.
, vol.2
, pp. 309-323
-
-
Avriel, M.1
-
3
-
-
68649100192
-
Limit distribution theory for maximum likelihood estimation of a log-concave density
-
MR2509075
-
BALABDAOUI, F., RUFIBACH, K. andWELLNER, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. 37 1299-1331. MR2509075
-
(2009)
Ann. Statist.
, vol.37
, pp. 1299-1331
-
-
Balabdaoui, F.1
Rufibach, K.2
Wellner, J.A.3
-
4
-
-
21344492381
-
Rates of convergence for minimum contrast estimators
-
Available at, MR1240719
-
BIRGÉ, L. and MASSART, P. (1993). Rates of convergence for minimum contrast estimators. Probab. Theory Related Fields 97 113-150. Available at http://dx.doi.org/10.1007/BF01199316. MR1240719
-
(1993)
Probab. Theory Related Fields
, vol.97
, pp. 113-150
-
-
Birgé, L.1
Massart, P.2
-
5
-
-
0000130180
-
Convex set functions in d-space
-
MR0404559
-
BORELL, C. (1975). Convex set functions in d-space. Period. Math. Hungar. 6 111-136. MR0404559
-
(1975)
Period. Math. Hungar.
, vol.6
, pp. 111-136
-
-
Borell, C.1
-
6
-
-
49549132663
-
On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation
-
MR0450480
-
BRASCAMP, H. J. and LIEB, E. H. (1976). On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 366-389. MR0450480
-
(1976)
J. Funct. Anal.
, vol.22
, pp. 366-389
-
-
Brascamp, H.J.1
Lieb, E.H.2
-
7
-
-
0003795688
-
E-entropy of convex sets and functions
-
MR0415155
-
BRONŠTE?IN, E. M. (1976). e-entropy of convex sets and functions. Sibirsk. Mat. Ž. 17 508-514, 715. MR0415155
-
(1976)
Sibirsk. Mat. Ž.
, vol.17
, Issue.508-514
, pp. 715
-
-
Bronšteǐn, E.M.1
-
8
-
-
0035602628
-
A Riemannian interpolation inequality à la Borell, Brascamp and Lieb
-
DOI 10.1007/s002220100160
-
CORDERO-ERAUSQUIN, D., MCCANN, R. J. and SCHMUCKENSCHLÄGER, M. (2001). A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146 219-257. MR1865396 (Pubitemid 33725759)
-
(2001)
Inventiones Mathematicae
, vol.146
, Issue.2
, pp. 219-257
-
-
Cordero-Erausquin, D.1
McCann, R.J.2
Schmuckenschlager, M.3
-
9
-
-
77957584324
-
Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density
-
CULE, M. and SAMWORTH, R. (2010). Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Statist. 4 254-270.
-
(2010)
Electron. J. Statist.
, vol.4
, pp. 254-270
-
-
Cule, M.1
Samworth, R.2
-
10
-
-
84871658599
-
Maximum likelihood estimation of a multidimensional log-concave density (with discussion)
-
CULE, M., SAMWORTH, R. and STEWART, M. (2010). Maximum likelihood estimation of a multidimensional log-concave density (with discussion). J. Roy. Statist. Soc. Ser. B 72 1-32.
-
(2010)
J. Roy. Statist. Soc. Ser. B
, vol.72
, pp. 1-32
-
-
Cule, M.1
Samworth, R.2
Stewart, M.3
-
11
-
-
0004102229
-
-
Academic Press, Boston, MA. MR0954608
-
DHARMADHIKARI, S. and JOAG-DEV, K. (1988). Unimodality, Convexity and Applications. Academic Press, Boston, MA. MR0954608
-
(1988)
Unimodality, Convexity and Applications
-
-
Dharmadhikari, S.1
Joag-Dev, K.2
-
12
-
-
0000251164
-
Geometrizing rates of convergence. II, III
-
668-701. MR1105839
-
DONOHO, D. L. and LIU, R. C. (1991). Geometrizing rates of convergence. II, III. Ann. Statist. 19 633-667, 668-701. MR1105839
-
(1991)
Ann. Statist.
, vol.19
, pp. 633-667
-
-
Donoho, D.L.1
Liu, R.C.2
-
14
-
-
50249107779
-
Active set and EM algorithms for logconcave densities based on complete and censored data
-
Univ. Bern. Available at arXiv: 0707.4643
-
DÜMBGEN, L., HÜSLER, A. and RUFIBACH, K. (2007). Active set and EM algorithms for logconcave densities based on complete and censored data. Technical report, Univ. Bern. Available at arXiv:0707.4643.
-
(2007)
Technical Report
-
-
Dümbgen, L.1
Hüsler, A.2
Rufibach, K.3
-
15
-
-
62749189131
-
Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency
-
MR2546798
-
DÜMBGEN, L. and RUFIBACH, K. (2009). Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency. Bernoulli 15 40-68. MR2546798
-
(2009)
Bernoulli
, vol.15
, pp. 40-68
-
-
Dümbgen, L.1
Rufibach, K.2
-
16
-
-
0035528158
-
Estimation of a convex function: Characterizations and asymptotic theory
-
MR1891742
-
GROENEBOOM, P., JONGBLOED, G. andWELLNER, J. A. (2001). Estimation of a convex function: Characterizations and asymptotic theory. Ann. Statist. 29 1653-1698. MR1891742
-
(2001)
Ann. Statist.
, vol.29
, pp. 1653-1698
-
-
Groeneboom, P.1
Jongbloed, G.2
Wellner, J.A.3
-
17
-
-
0000907205
-
On the composition of unimodal distributions
-
MR0087249
-
IBRAGIMOV, I. A. (1956). On the composition of unimodal distributions. Teor. Veroyatnost. i Primenen. 1 283-288. MR0087249
-
(1956)
Teor. Veroyatnost. i Primenen.
, vol.1
, pp. 283-288
-
-
Ibragimov, I.A.1
-
19
-
-
0007259913
-
Minimax lower bounds and moduli of continuity
-
MR1792307
-
JONGBLOED, G. (2000). Minimax lower bounds and moduli of continuity. Statist. Probab. Lett. 50 279-284. MR1792307
-
(2000)
Statist. Probab. Lett.
, vol.50
, pp. 279-284
-
-
Jongbloed, G.1
-
20
-
-
77957585646
-
Quasi-concave density estimation
-
KOENKER, R. and MIZERA, I. (2010). Quasi-concave density estimation. Ann. Statist. 38 2998-3027.
-
(2010)
Ann. Statist.
, vol.38
, pp. 2998-3027
-
-
Koenker, R.1
Mizera, I.2
-
21
-
-
0000168012
-
Distinctness of the eigenvalues of a quadratic form in a multivariate sample
-
MR0331643
-
OKAMOTO, M. (1973). Distinctness of the eigenvalues of a quadratic form in a multivariate sample. Ann. Statist. 1 763-765. MR0331643
-
(1973)
Ann. Statist.
, vol.1
, pp. 763-765
-
-
Okamoto, M.1
-
22
-
-
68649113912
-
Estimating a Polya frequency function
-
IMS, Beachwood, OH. MR2459192
-
PAL, J. K.,WOODROOFE, M. B. and MEYER, M. C. (2007). Estimating a Polya frequency function. In Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. Institute of Mathematical Statistics Lecture Notes-Monograph Series 54 239-249. IMS, Beachwood, OH. MR2459192
-
(2007)
Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. Institute of Mathematical Statistics Lecture Notes-Monograph Series
, vol.54
, pp. 239-249
-
-
Pal, J.K.1
Woodroofe, M.B.2
Meyer, M.C.3
-
23
-
-
0000485147
-
On logarithmic concave measures and functions
-
MR0404557
-
PRÉKOPA, A. (1973). On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34 335-343. MR0404557
-
(1973)
Acta Sci. Math. (Szeged)
, vol.34
, pp. 335-343
-
-
Prékopa, A.1
-
24
-
-
0001377577
-
On convexity of measures
-
MR0428540
-
RINOTT, Y. (1976). On convexity of measures. Ann. Probab. 4 1020-1026. MR0428540
-
(1976)
Ann. Probab.
, vol.4
, pp. 1020-1026
-
-
Rinott, Y.1
-
27
-
-
34547741997
-
Computing maximum likelihood estimators of a log-concave density function
-
MR2407642
-
RUFIBACH, K. (2007). Computing maximum likelihood estimators of a log-concave density function. J. Stat. Comput. Simul. 77 561-574. MR2407642
-
(2007)
J. Stat. Comput. Simul.
, vol.77
, pp. 561-574
-
-
Rufibach, K.1
-
28
-
-
74849099592
-
Consistency of multivariate log-concave density estimators
-
MR2593576
-
SCHUHMACHER, D. and DUEMBGEN, L. (2010). Consistency of multivariate log-concave density estimators. Statist. Probab. Lett. 80 376-380. MR2593576
-
(2010)
Statist. Probab. Lett.
, vol.80
, pp. 376-380
-
-
Schuhmacher, D.1
Duembgen, L.2
-
29
-
-
78650086541
-
Multivariate log-concave distributions as a nearly parametric model
-
Univ. Bern., Available at arXiv:0907.0250v1
-
SCHUHMACHER, D., HÜSLER, A. and DUEMBGEN, L. (2009). Multivariate log-concave distributions as a nearly parametric model. Technical report, Univ. Bern. Available at arXiv:0907.0250v1.
-
(2009)
Technical Report
-
-
Schuhmacher, D.1
Hüsler, A.2
Duembgen, L.3
-
31
-
-
0001095650
-
Some remarks about the convolution of unimodal functions
-
MR0735860
-
UHRIN, B. (1984). Some remarks about the convolution of unimodal functions. Ann. Probab. 12 640-645. MR0735860
-
(1984)
Ann. Probab.
, vol.12
, pp. 640-645
-
-
Uhrin, B.1
-
33
-
-
77955142547
-
Inference and modeling with log-concave distributions
-
WALTHER, G. (2010). Inference and modeling with log-concave distributions. Statist. Sci. 24 319-327.
-
(2010)
Statist. Sci.
, vol.24
, pp. 319-327
-
-
Walther, G.1
|