-
1
-
-
0007315440
-
Estimating the derivative of a convex density
-
Technical report, Dept. of Mathematical Statistics, Univ. Lund
-
Anevski, D. (1994). Estimating the derivative of a convex density. Technical report, Dept. of Mathematical Statistics, Univ. Lund.
-
(1994)
-
-
Anevski, D.1
-
2
-
-
0037901950
-
Estimating the derivative of a convex density
-
Anevski, D. (2003). Estimating the derivative of a convex density. Statist. Neerlandica 57 245-257.
-
(2003)
Statist. Neerlandica
, vol.57
, pp. 245-257
-
-
Anevski, D.1
-
3
-
-
11944251241
-
Log-concave probability and its applications
-
Bagnoli, M. and Bergstrom, T. (2005). Log-concave probability and its applications. Econ. Theory 26 445-469.
-
(2005)
Econ. Theory
, vol.26
, pp. 445-469
-
-
Bagnoli, M.1
Bergstrom, T.2
-
5
-
-
50849129566
-
Estimation of a k-monotone density: Limit distribution theory and the spline connection
-
Balabdaoui, F. and Wellner, J.A. (2008). Estimation of a k-monotone density: Limit distribution theory and the spline connection. Ann. Statist. 35 2536-2564.
-
(2008)
Ann. Statist
, vol.35
, pp. 2536-2564
-
-
Balabdaoui, F.1
Wellner, J.A.2
-
6
-
-
62749128836
-
Limit distribution theory for maximum likelihood estimation of a log-concave density
-
To appear
-
Balabdaoui, R, Rufibach, K. and Wellner, J.A. (2008). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist. To appear.
-
(2008)
Ann. Statist
-
-
Balabdaoui, R.1
Rufibach, K.2
Wellner, J.A.3
-
7
-
-
0003495202
-
-
New York: Wiley
-
Barlow, E.B., Bartholomew, D.J., Bremner, J.M. and Brunk, H.D. (1972). Statistical Inference under Order Restrictions. The Theory and Application of Isotonic Regression. New York: Wiley.
-
(1972)
Statistical Inference under Order Restrictions. The Theory and Application of Isotonic Regression
-
-
Barlow, E.B.1
Bartholomew, D.J.2
Bremner, J.M.3
Brunk, H.D.4
-
9
-
-
0032372975
-
MCMC convergence diagnosis via multivariate bounds on log-concave densities
-
Brooks, S. (1998). MCMC convergence diagnosis via multivariate bounds on log-concave densities. Ann. Statist. 26 398-433.
-
(1998)
Ann. Statist
, vol.26
, pp. 398-433
-
-
Brooks, S.1
-
10
-
-
34547190771
-
Clustering with mixtures of log-concave distributions
-
Chang, G. and Walther, G. (2007). Clustering with mixtures of log-concave distributions. Comp. Statist. Data Anal. 51 6242-6251.
-
(2007)
Comp. Statist. Data Anal
, vol.51
, pp. 6242-6251
-
-
Chang, G.1
Walther, G.2
-
11
-
-
0030504418
-
Density estimation by wavelet thresholding
-
Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist. 24 508-539.
-
(1996)
Ann. Statist
, vol.24
, pp. 508-539
-
-
Donoho, D.L.1
Johnstone, I.M.2
Kerkyacharian, G.3
Picard, D.4
-
12
-
-
0040040083
-
New goodness-of-fit tests and their application to nonparametric confidence sets
-
Dümbgen, L. (1998). New goodness-of-fit tests and their application to nonparametric confidence sets. Ann. Statist. 26 288-314.
-
(1998)
Ann. Statist
, vol.26
, pp. 288-314
-
-
Dümbgen, L.1
-
13
-
-
33748877653
-
Consistency of concave regression, with an application to current status data
-
Dümbgen, L., Freitag S, and Jongbloed, G. (2004). Consistency of concave regression, with an application to current status data. Math. Methods Statist. 13 69-81.
-
(2004)
Math. Methods Statist
, vol.13
, pp. 69-81
-
-
Dümbgen, L.1
Freitag, S.2
Jongbloed, G.3
-
14
-
-
62749136515
-
-
Dümbgen, L., Hüsler, A. and Rufibach, K. (2007). Active set and EM algorithms for log-concave densities based on complete and censored data. Technical Report 61, IMSV, Univ. Bern. arXiv:0707.4643.
-
Dümbgen, L., Hüsler, A. and Rufibach, K. (2007). Active set and EM algorithms for log-concave densities based on complete and censored data. Technical Report 61, IMSV, Univ. Bern. arXiv:0707.4643.
-
-
-
-
15
-
-
84922389466
-
Marshall's lemma for convex density estimation
-
Asymptotics: Particles, Processes and Inverse Problems E. Cator, G. JongbIoed, C. Kraaikamp, R. Lopuhad and J.A. Wellner, eds
-
Dijmbgen, L., Rufibach, K. and Wellner, J.A. (2007). Marshall's lemma for convex density estimation. In Asymptotics: Particles, Processes and Inverse Problems (E. Cator, G. JongbIoed, C. Kraaikamp, R. Lopuhad and J.A. Wellner, eds.) 101-107. IMS Lecture Notes-Monograph Series 55.
-
(2007)
IMS Lecture Notes-Monograph Series
, vol.55
, pp. 101-107
-
-
Dijmbgen, L.1
Rufibach, K.2
Wellner, J.A.3
-
16
-
-
62749146619
-
-
Dümbgen, L. and Rufibach, K. (2008). Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency. Technical Report 66, IMSV, Univ. Bern. arxiv:0709.0334.
-
Dümbgen, L. and Rufibach, K. (2008). Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency. Technical Report 66, IMSV, Univ. Bern. arxiv:0709.0334.
-
-
-
-
17
-
-
0034362429
-
Maximum likelihood estimation of smooth monotone and unimodal densities
-
Eggermont, P.P.B. and LaRiccia, V.N. (2000). Maximum likelihood estimation of smooth monotone and unimodal densities. Ann. Statist. 28 922-947.
-
(2000)
Ann. Statist
, vol.28
, pp. 922-947
-
-
Eggermont, P.P.B.1
LaRiccia, V.N.2
-
18
-
-
42149093784
-
Uniform central limit theorems for kernel density estimators
-
Giné, E. and Nickl, R. (2007). Uniform central limit theorems for kernel density estimators. Probab. Theory Related Fields 141 333-387.
-
(2007)
Probab. Theory Related Fields
, vol.141
, pp. 333-387
-
-
Giné, E.1
Nickl, R.2
-
19
-
-
84859500224
-
An exponential inequality for the distribution function of the kernel density estimator, with applications to adaptive estimation
-
To appear
-
Giné, E. and Nickl, R. (2008). An exponential inequality for the distribution function of the kernel density estimator, with applications to adaptive estimation. Probab. Theory Related Fields. To appear.
-
(2008)
Probab. Theory Related Fields
-
-
Giné, E.1
Nickl, R.2
-
20
-
-
84945603474
-
On the theory of mortality measurement, part II
-
Grenander, U. (1956). On the theory of mortality measurement, part II. Skand. Aktuarietidskrift 39 125-153.
-
(1956)
Skand. Aktuarietidskrift
, vol.39
, pp. 125-153
-
-
Grenander, U.1
-
22
-
-
0002641355
-
Brownian motion with a parabolic drift and Airy functions
-
Groeneboom, P. (1988). Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields 81 79-109.
-
(1988)
Probab. Theory Related Fields
, vol.81
, pp. 79-109
-
-
Groeneboom, P.1
-
23
-
-
0035528158
-
Estimation of a convex function: Characterization and asymptotic theory
-
Groeneboom, P., Jongbloed, G. and Wellner, J.A. (2001). Estimation of a convex function: Characterization and asymptotic theory. Ann. Statist. 29 1653-1698.
-
(2001)
Ann. Statist
, vol.29
, pp. 1653-1698
-
-
Groeneboom, P.1
Jongbloed, G.2
Wellner, J.A.3
-
24
-
-
50249125976
-
The support reduction algorithm for computing nonparametric function estimates in mixture models
-
To appear
-
Groeneboom, P., Jongbloed, G. and Wellner, J.A. (2008). The support reduction algorithm for computing nonparametric function estimates in mixture models. Scand. J. Statist. To appear.
-
(2008)
Scand. J. Statist
-
-
Groeneboom, P.1
Jongbloed, G.2
Wellner, J.A.3
-
25
-
-
0035628555
-
Nonparametric estimation of hazard rate under the constraint of monotonicity
-
Hall, P., Huang, L.S., Gifford, J.A. and Gijbels, I. (2001). Nonparametric estimation of hazard rate under the constraint of monotonicity. J. Comput. Graph. Statist. 10 592-614.
-
(2001)
J. Comput. Graph. Statist
, vol.10
, pp. 592-614
-
-
Hall, P.1
Huang, L.S.2
Gifford, J.A.3
Gijbels, I.4
-
26
-
-
23744507090
-
Testing for monotone increasing hazard rate
-
Hall, P. and van Keilegom, I. (2005). Testing for monotone increasing hazard rate. Ann. Statist. 33 1109-1137.
-
(2005)
Ann. Statist
, vol.33
, pp. 1109-1137
-
-
Hall, P.1
van Keilegom, I.2
-
27
-
-
0002670649
-
Design, modelling and analysis of some biological datasets
-
C.L. Mallows, ed, New York: Wiley
-
Hampel, F.R. (1987). Design, modelling and analysis of some biological datasets. In Design, Data and Analysis, By Some Friends of Cuthbert Daniel (C.L. Mallows, ed.). New York: Wiley.
-
(1987)
Design, Data and Analysis, By Some Friends of Cuthbert Daniel
-
-
Hampel, F.R.1
-
28
-
-
3543013721
-
A semi-parametric model for censored and passively registered data
-
Jonker, M. and van der Vaart, A. (2001). A semi-parametric model for censored and passively registered data. Bernoulli 7 1-31.
-
(2001)
Bernoulli
, vol.7
, pp. 1-31
-
-
Jonker, M.1
van der Vaart, A.2
-
29
-
-
0009387419
-
A lower bound on the risks of nonparametric estimates of densities in the uniform metric
-
Khas'minskii, R.Z. (1978). A lower bound on the risks of nonparametric estimates of densities in the uniform metric. Theory Prob. Appl. 23 794-798.
-
(1978)
Theory Prob. Appl
, vol.23
, pp. 794-798
-
-
Khas'minskii, R.Z.1
-
30
-
-
0002842430
-
Asymptotically minimax estimation of concave and convex distribution functions
-
Kiefer, J. and Wolfowitz, J. (1976). Asymptotically minimax estimation of concave and convex distribution functions. Z. Wahrsch. Verw. Gebiete 34 73-85.
-
(1976)
Z. Wahrsch. Verw. Gebiete
, vol.34
, pp. 73-85
-
-
Kiefer, J.1
Wolfowitz, J.2
-
31
-
-
30344444636
-
The behavior of the NPMLE of a decreasing density near the boundaries of the support
-
Kulikov, V.N. and Lopuhaä, H.P. (2006). The behavior of the NPMLE of a decreasing density near the boundaries of the support. Ann. Statist. 34 742-768.
-
(2006)
Ann. Statist
, vol.34
, pp. 742-768
-
-
Kulikov, V.N.1
Lopuhaä, H.P.2
-
32
-
-
0345849742
-
Discussion of Barlow and van Zwet's paper
-
M.L. Puri, ed, Cambridge Univ. Press
-
Marshall, A.W. (1970). Discussion of Barlow and van Zwet's paper. In Nonparametric Techniques in Statistical Inference. Proceedings of the First International Symposium on Nonparametric Techniques held at Indiana University, June, 1969 (M.L. Puri, ed.) 174-176. Cambridge Univ. Press.
-
(1970)
Nonparametric Techniques in Statistical Inference. Proceedings of the First International Symposium on Nonparametric Techniques held at Indiana University, June, 1969
, pp. 174-176
-
-
Marshall, A.W.1
-
33
-
-
2442467849
-
Consistent maximum likelihood estimation of a unimodal density using shape restrictions
-
Meyer, C.M. and Woodroofe, M. (2004). Consistent maximum likelihood estimation of a unimodal density using shape restrictions. Canad. J. Statist. 32 85-100.
-
(2004)
Canad. J. Statist
, vol.32
, pp. 85-100
-
-
Meyer, C.M.1
Woodroofe, M.2
-
35
-
-
68649113912
-
Estimating a Polya frequency function
-
Complex Datasets and Inverse problems: Tomography, Networks and Beyond R. Liu, W. Strawderman and C.-H. Zhang, eds
-
Pat, J., Woodroofe, M. and Meyer, M. (2006). Estimating a Polya frequency function. In Complex Datasets and Inverse problems: Tomography, Networks and Beyond (R. Liu, W. Strawderman and C.-H. Zhang, eds.) 239-249. IMS Lecture Notes - Monograph Series 54.
-
(2006)
IMS Lecture Notes - Monograph Series
, vol.54
, pp. 239-249
-
-
Pat, J.1
Woodroofe, M.2
Meyer, M.3
-
36
-
-
0002783594
-
Logarithmic concave measures with application to stochastic programming
-
Prékopa, A. (1971). Logarithmic concave measures with application to stochastic programming. Acta Sci. Math. 32 301-316.
-
(1971)
Acta Sci. Math
, vol.32
, pp. 301-316
-
-
Prékopa, A.1
-
37
-
-
0002727835
-
Estimation of a unimodal density
-
Rao, P. (1969). Estimation of a unimodal density. Sankhya Ser. A 31 23-36.
-
(1969)
Sankhya Ser. A
, vol.31
, pp. 23-36
-
-
Rao, P.1
-
39
-
-
62749165615
-
-
Rufibach, K. (2006). Log-concave density estimation and bump hunting for i.i.d. observations. Ph.D. dissertation, Univ. Bern and Göttingen.
-
Rufibach, K. (2006). Log-concave density estimation and bump hunting for i.i.d. observations. Ph.D. dissertation, Univ. Bern and Göttingen.
-
-
-
-
40
-
-
34547741997
-
Computing maximum likelihood estimators of a log-concave density function
-
Rufibach, K. (2007). Computing maximum likelihood estimators of a log-concave density function. J. Statist. Comput. Simul. 77 561-574.
-
(2007)
J. Statist. Comput. Simul
, vol.77
, pp. 561-574
-
-
Rufibach, K.1
-
41
-
-
62749153489
-
-
Rufibach, K. and Dümbgen, L, 2006, logcondens: Estimate a log-concave probability density from i.i.d. observations. R package version 1.3.0
-
Rufibach, K. and Dümbgen, L. (2006). logcondens: Estimate a log-concave probability density from i.i.d. observations. R package version 1.3.0.
-
-
-
-
43
-
-
0000738873
-
On the estimation of a probability density function by the maximum penalized likelihood method
-
Silverman, B.W. (1982). On the estimation of a probability density function by the maximum penalized likelihood method. Ann. Statist. 10 795-810.
-
(1982)
Ann. Statist
, vol.10
, pp. 795-810
-
-
Silverman, B.W.1
-
44
-
-
0002894731
-
The oscillation behaviour of empirical processes
-
Stute, W. (1982). The oscillation behaviour of empirical processes. Ann. Probab. 10 86-107.
-
(1982)
Ann. Probab
, vol.10
, pp. 86-107
-
-
Stute, W.1
-
46
-
-
0035998823
-
Detecting the presence of mixing with multiscale maximum likelihood
-
Walther, G. (2002). Detecting the presence of mixing with multiscale maximum likelihood. J. Amer Statist. Assoc. 97 508-514.
-
(2002)
J. Amer Statist. Assoc
, vol.97
, pp. 508-514
-
-
Walther, G.1
-
47
-
-
0000477412
-
Maximum likelihood estimation of a unimodal density function
-
Wegman, E.J. (1970). Maximum likelihood estimation of a unimodal density function. Ann. Math. Statist. 41457-471.
-
(1970)
Ann. Math. Statist
, vol.41
, pp. 457-471
-
-
Wegman, E.J.1
-
48
-
-
0000067461
-
A penalized maximum likelihood estimate of f (0+) when f is non-increasing
-
Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of f (0+) when f is non-increasing. Ann. Statist. 3 501-515.
-
(1993)
Ann. Statist
, vol.3
, pp. 501-515
-
-
Woodroofe, M.1
Sun, J.2
|