메뉴 건너뛰기




Volumn , Issue , 2002, Pages 625-632

Feature Selection in Mixture-Based Clustering

Author keywords

[No Author keywords available]

Indexed keywords

MAXIMUM PRINCIPLE;

EID: 78649943034     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (36)

References (24)
  • 5
    • 0002390851 scopus 로고    scopus 로고
    • Efficient feature selection in conceptual clustering
    • M. Devaney and A. Ram. Efficient feature selection in conceptual clustering. In Proc. ICML'1997, pp. 92-97, 1997.
    • (1997) Proc. ICML'1997 , pp. 92-97
    • Devaney, M.1    Ram, A.2
  • 6
    • 0002878444 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning
    • J. Dy and C. Brodley. Feature subset selection and order identification for unsupervised learning. In Proc. ICML'2000, pp. 247-254, 2000.
    • (2000) Proc. ICML'2000 , pp. 247-254
    • Dy, J.1    Brodley, C.2
  • 7
    • 0036472386 scopus 로고    scopus 로고
    • Information Theoretic Clustering
    • E. Gokcay and J. Principe. Information Theoretic Clustering. IEEE Trans. on PAMI, 24(2):158-171, 2002.
    • (2002) IEEE Trans. on PAMI , vol.24 , Issue.2 , pp. 158-171
    • Gokcay, E.1    Principe, J.2
  • 9
    • 0036522404 scopus 로고    scopus 로고
    • Unsupervised learning of finite mixture models
    • M. Figueiredo and A. Jain. Unsupervised learning of finite mixture models. IEEE Trans. on PAMI, 24(3):381-396, 2002.
    • (2002) IEEE Trans. on PAMI , vol.24 , Issue.3 , pp. 381-396
    • Figueiredo, M.1    Jain, A.2
  • 11
    • 0034593107 scopus 로고    scopus 로고
    • Feature Selection in Unsupervised Learning via Evolutionary Search
    • Y. Kim, W. Street, and F. Menczer. Feature Selection in Unsupervised Learning via Evolutionary Search. In Proc. ACM SIGKDD, pp. 365-369, 2000.
    • (2000) Proc. ACM SIGKDD , pp. 365-369
    • Kim, Y.1    Street, W.2    Menczer, F.3
  • 12
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 13
    • 0000012317 scopus 로고    scopus 로고
    • Toward optimal feature selection
    • D. Koller and M. Sahami. Toward optimal feature selection. In Proc. ICML'1996, pp. 284-292, 1996.
    • (1996) Proc. ICML'1996 , pp. 284-292
    • Koller, D.1    Sahami, M.2
  • 14
    • 4544323755 scopus 로고    scopus 로고
    • Tech. Rep., Dept. Computer Science and Eng., Michigan State Univ
    • M. Law, M. Figueiredo, and A. Jain. Feature Saliency in Unsupervised Learning. Tech. Rep., Dept. Computer Science and Eng., Michigan State Univ., 2002. Available at http://www.cse.msu.edu/-lawhiu/papers/TR02.ps.gz.
    • (2002) Feature Saliency in Unsupervised Learning
    • Law, M.1    Figueiredo, M.2    Jain, A.3
  • 16
    • 0036522403 scopus 로고    scopus 로고
    • Unsupervised feature selection using feature similarity
    • P. Mitra and C. A. Murthy. Unsupervised feature selection using feature similarity. IEEE Trans. on PAMI, 24(3):301-312, 2002.
    • (2002) IEEE Trans. on PAMI , vol.24 , Issue.3 , pp. 301-312
    • Mitra, P.1    Murthy, C. A.2
  • 17
    • 12744257341 scopus 로고    scopus 로고
    • Feature weighting in k-means clustering
    • to appear
    • D. Modha and W. Scott-Spangler. Feature weighting in k-means clustering. Machine Learning, 2002. to appear.
    • (2002) Machine Learning
    • Modha, D.1    Scott-Spangler, W.2
  • 18
    • 0035422134 scopus 로고    scopus 로고
    • Minimum-entropy data partitioning using RJ-MCMC
    • S. Roberts, C. Holmes, and D. Denison. Minimum-entropy data partitioning using RJ-MCMC. IEEE Trans. on PAMI, 23(8):909-914, 2001.
    • (2001) IEEE Trans. on PAMI , vol.23 , Issue.8 , pp. 909-914
    • Roberts, S.1    Holmes, C.2    Denison, D.3
  • 19
    • 84883699144 scopus 로고    scopus 로고
    • Dependency-based feature selection for clustering symbolic data
    • L. Talavera. Dependency-based feature selection for clustering symbolic data. Intelligent Data Analysis, 4:19-28, 2000.
    • (2000) Intelligent Data Analysis , vol.4 , pp. 19-28
    • Talavera, L.1
  • 20
    • 0018491795 scopus 로고
    • A problem of dimensionality: A simple example
    • G. Trunk. A problem of dimensionality: A simple example. IEEE Trans. on PAMI, 1(3):306-307, 1979.
    • (1979) IEEE Trans. on PAMI , vol.1 , Issue.3 , pp. 306-307
    • Trunk, G.1
  • 21
    • 4344610280 scopus 로고    scopus 로고
    • Generalized model selection for unsupervised learning in high dimensions
    • S. Solla, T. Leen, and K. Muller, eds, MIT Press
    • S. Vaithyanathan and B. Dom. Generalized model selection for unsupervised learning in high dimensions. In S. Solla, T. Leen, and K. Muller, eds, Proc. of NIPS'12. MIT Press, 2000.
    • (2000) Proc. of NIPS'12
    • Vaithyanathan, S.1    Dom, B.2
  • 22
    • 0003076895 scopus 로고    scopus 로고
    • Feature selection for high-dimensional genomic microarray data
    • E. Xing, M. Jordan, and R. Karp. Feature selection for high-dimensional genomic microarray data. In Proc. ICML'2001, pp. 601-608, 2001.
    • (2001) Proc. ICML'2001 , pp. 601-608
    • Xing, E.1    Jordan, M.2    Karp, R.3
  • 24
    • 0042184023 scopus 로고    scopus 로고
    • MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions
    • C.S. Wallace and D.L. Dowe. MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions. Statistics and Computing, 10:73-83, 2000.
    • (2000) Statistics and Computing , vol.10 , pp. 73-83
    • Wallace, C.S.1    Dowe, D.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.