메뉴 건너뛰기




Volumn 55, Issue 3, 2010, Pages 333-350

Predictive downscaling based on non-homogeneous hidden Markov models;Prévision en descente d'échelle basée sur des modèles de Markov cachés non-homogènes

Author keywords

Downscaling; Markov models; Precipitation; Weather generator

Indexed keywords

DAILY RAINFALL; DEMETER; DOWN-SCALING; EVERGLADES NATIONAL PARK; GENERATING MECHANISM; HIDDEN STATE; INTRA-SEASONAL VARIABILITIES; LONG-WAVE RADIATION; MARKOV MODEL; MODEL SKILL; NON-HOMOGENEOUS; PHYSICAL PROCESS; PRECIPITATION; PRECIPITATION PATTERNS; RAINFALL FIELDS; RAINFALL PREDICTION; SEA LEVEL PRESSURE; SEA SURFACE TEMPERATURES; SEASONAL CLIMATE DATA; SEASONAL DATUM; SEASONAL RAINFALL; SOUTH FLORIDA; SOUTHERN OSCILLATION; STATE MODELS; STATISTICAL MEASURES; STOCHASTIC CHARACTERISTIC; WEATHER GENERATOR;

EID: 78649724209     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626661003780342     Document Type: Article
Times cited : (29)

References (34)
  • 1
    • 0032192821 scopus 로고    scopus 로고
    • Stochastic downscaling of numerical climate model simulations
    • Bates, B. C., Charles, S. P. & Hughes, J. P. (1998) Stochastic downscaling of numerical climate model simulations. Environ. Model. Software 13, 325-331.
    • (1998) Environ. Model. Software , vol.13 , pp. 325-331
    • Bates, B.C.1    Charles, S.P.2    Hughes, J.P.3
  • 2
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L. E., Petrie, T., Soules, G. &Weiss, N. (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Materials Statist. 41(1), 164-171.
    • (1970) Ann. Materials Statist. , vol.41 , Issue.1 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 3
    • 0034656555 scopus 로고    scopus 로고
    • Hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts
    • Bellone, E. J., Hughes, P. & Guttorp, P. (2000) Hidden Markov model for downscaling synoptic atmospheric patterns to precipitation amounts. Climate Res. 15, 1-12.
    • (2000) Climate Res. , vol.15 , pp. 1-12
    • Bellone, E.J.1    Hughes, P.2    Guttorp, P.3
  • 4
    • 0024253273 scopus 로고
    • Determining the optimum number of predictors for a linear prediction equation
    • Carr,M. B. (1988) Determining the optimum number of predictors for a linear prediction equation. Monthly Weather Rev. 116(8), 1623-1640.
    • (1988) Monthly Weather Rev. , vol.116 , Issue.8 , pp. 1623-1640
    • Carr, M.B.1
  • 6
    • 0028254910 scopus 로고
    • A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena
    • Hughes, J. P. & Guttorp, P. (1994a) A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour. Res. 30(5), 1535-1546.
    • (1994) Water Resour. Res. , vol.30 , Issue.5 , pp. 1535-1546
    • Hughes, J.P.1    Guttorp, P.2
  • 7
    • 0000750346 scopus 로고
    • Incorporating spatial dependence and atmospheric data in a model of precipitation
    • Hughes, J. P. & Guttorp, P. (1994b) Incorporating spatial dependence and atmospheric data in a model of precipitation. J. Appl. Met. 33(12), 1503-1515.
    • (1994) J. Appl. Met. , vol.33 , Issue.12 , pp. 1503-1515
    • Hughes, J.P.1    Guttorp, P.2
  • 8
    • 0033480863 scopus 로고    scopus 로고
    • A non-homogeneous hidden Markov model for precipitation occurrence
    • Hughes, J. P. & Guttorp, P. (1999) A non-homogeneous hidden Markov model for precipitation occurrence. J. Appl. Statistics 48(1), 15-30.
    • (1999) J. Appl. Statistics , vol.48 , Issue.1 , pp. 15-30
    • Hughes, J.P.1    Guttorp, P.2
  • 10
    • 20844458468 scopus 로고    scopus 로고
    • Applicability of statistical learning algorithms in ground water quality modeling
    • doi:10.1029/2004WR003608
    • Khalil, A. F., Almasri, M. N., McKee, M.&Kaluarachchi, J. J. (2005a) Applicability of statistical learning algorithms in ground water quality modeling. Water Resour. Res. 41(5), W05010, doi:10.1029/2004WR003608.
    • (2005) Water Resour. Res. , vol.41 , Issue.5
    • Khalil, A.F.1    Almasri, M.N.2    McKee, M.3    Kaluarachchi, J.J.4
  • 11
    • 29944444287 scopus 로고    scopus 로고
    • Sparse Bayesian learning machine for real-time management of reservoir releases
    • dio:10.1029/2004WR003891
    • Khalil, A. F., McKee, M., Kemblowski, M. & Tirusew, A. (2005b) Sparse Bayesian learning machine for real-time management of reservoir releases. Water Resour. Res. 41(11), W11401, dio:10.1029/2004WR003891.
    • (2005) Water Resour. Res. , vol.41 , Issue.11
    • Khalil, A.F.1    McKee, M.2    Kemblowski, M.3    Tirusew, A.4
  • 12
    • 28444480680 scopus 로고    scopus 로고
    • Multiobjective Analysis of chaotic systems using sparse learning machines
    • Khalil, A. F., McKee, M., Kemblowski, M., Asefa, T. & Bastidas, L. (2006) Multiobjective Analysis of chaotic systems using sparse learning machines. Adv. Water Resour. 29 (1), 72-88.
    • (2006) Adv. Water Resour. , vol.29 , Issue.1 , pp. 72-88
    • Khalil, A.F.1    McKee, M.2    Kemblowski, M.3    Asefa, T.4    Bastidas, L.5
  • 14
    • 33846393970 scopus 로고    scopus 로고
    • Episodic interannual climate oscillations and their influence on seasonal rainfall in the Everglades National Park
    • doi:10.1029/2006WR005017
    • Kwon, H.-H., Lall, U., Moon, Y.-I., Khalil, A. F. & Ahn, H. (2006) Episodic interannual climate oscillations and their influence on seasonal rainfall in the Everglades National Park. Water Resour. Res. 42, W11404, doi:10.1029/2006WR005017.
    • (2006) Water Resour. Res. , vol.42
    • Kwon, H.-H.1    Lall, U.2    Moon, Y.-I.3    Khalil, A.F.4    Ahn, H.5
  • 15
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness- of-fit measures in hydrologic and hydroclimatic model validation
    • Legates, D. R. & McCabe, G. J. (1999) Evaluating the use of goodness- of-fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35(1), 233-241.
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 17
    • 26444489069 scopus 로고    scopus 로고
    • A nonparametric nonhomogeneous hidden Markov model for downscaling of multisite daily rainfall occurrences
    • doi:10.1029/ 2004JD005677
    • Mehrotra, R. & Sharma, A. (2005) A nonparametric nonhomogeneous hidden Markov model for downscaling of multisite daily rainfall occurrences. J. Geophys. Res. 110, D16108, doi:10.1029/ 2004JD005677.
    • (2005) J. Geophys. Res. , vol.110
    • Mehrotra, R.1    Sharma, A.2
  • 18
    • 5444271672 scopus 로고    scopus 로고
    • Comparison of two approaches for downscaling synoptic atmospheric patterns to multisite precipitation occurrence
    • doi:10.1029/2004JD004823
    • Mehrotra, R., Sharma, A. & Cordery, I. (2004) Comparison of two approaches for downscaling synoptic atmospheric patterns to multisite precipitation occurrence. J. Geophys. Res. 109, D14107, doi:10.1029/2004JD004823.
    • (2004) J. Geophys. Res. , vol.109
    • Mehrotra, R.1    Sharma, A.2    Cordery, I.3
  • 19
    • 33749567021 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for local precipitation by downscaling largescale atmospheric circulation patterns
    • doi:10.1002/env.790
    • Mendes, J. M., Turkman, K. F. & Corte-Real, J. (2006) A Bayesian hierarchical model for local precipitation by downscaling largescale atmospheric circulation patterns. Environmetrics 7(17), doi:10.1002/env.790.
    • (2006) Environmetrics , vol.7 , Issue.17
    • Mendes, J.M.1    Turkman, K.F.2    Corte-Real, J.3
  • 22
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner, L. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257-285.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-285
    • Rabiner, L.1
  • 23
    • 0028852970 scopus 로고
    • Seasonality of precipitation along a meridian in thewestern US
    • Rajagopalan, B. & Lall, U. (1995) Seasonality of precipitation along a meridian in thewestern US. Geophys. Res. Lett. 22(9), 1081-1084.
    • (1995) Geophys. Res. Lett. , vol.22 , Issue.9 , pp. 1081-1084
    • Rajagopalan, B.1    Lall, U.2
  • 25
    • 11044237669 scopus 로고    scopus 로고
    • Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model
    • Robertson, A. W., Kirshner, S. & Smyth, P. (2004) Downscaling of daily rainfall occurrence over northeast Brazil using a hidden Markov model. J. Climate 17(22), 4407-4424.
    • (2004) J. Climate , vol.17 , Issue.22 , pp. 4407-4424
    • Robertson, A.W.1    Kirshner, S.2    Smyth, P.3
  • 28
    • 0026460713 scopus 로고
    • Application of a scale-separation verification technique to regional forecast models
    • Stamus, P. A., Carr, F. H. & Baumhefner, D. P. (1992) Application of a scale-separation verification technique to regional forecast models. Monthly Weather Rev. 120, 149-163.
    • (1992) Monthly Weather Rev. , vol.120 , pp. 149-163
    • Stamus, P.A.1    Carr, F.H.2    Baumhefner, D.P.3
  • 29
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • In, (ed. by S. Solla, T. Leen & K. R. Muller), MIT Press, Cambridge, Massachusetts, USA
    • Tipping, M. E. (2000) The relevance vector machine. In: Advances in Neural Information Processing Systems (ed. by S. Solla, T. Leen & K. R. Muller), vol. 12, 652-658. MIT Press, Cambridge, Massachusetts, USA.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 652-658
    • Tipping, M.E.1
  • 30
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. E. (2001) Sparse Bayesian learning and the relevance vector machine. J. Machine Learning 1, 211-244.
    • (2001) J. Machine Learning , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 31
    • 33750018142 scopus 로고    scopus 로고
    • Downscaling of precipitation for climate change scenarios: A support vector machine approach
    • Tripathi, S., Srinivas, V. V. & Nanjundiah, R. S. (2006) Downscaling of precipitation for climate change scenarios: a support vector machine approach. J. Hydrol. 330(3-4), 621-640.
    • (2006) J. Hydrol. , vol.330 , Issue.3-4 , pp. 621-640
    • Tripathi, S.1    Srinivas, V.V.2    Nanjundiah, R.S.3
  • 32
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimum decoding algorithm
    • Viterbi, A. J. (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Information Theory 13(2), 260-267.
    • (1967) IEEE Trans. Information Theory , vol.13 , Issue.2 , pp. 260-267
    • Viterbi, A.J.1
  • 33
    • 0032170226 scopus 로고    scopus 로고
    • Multisite generalization of a daily stochastic precipitation generation model
    • Wilks, D. S. (1998) Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol. 210, 178-191.
    • (1998) J. Hydrol. , vol.210 , pp. 178-191
    • Wilks, D.S.1
  • 34
    • 0024783205 scopus 로고
    • Conditioning stochastic daily precipitation models on total monthly precipitation
    • Wilks, D. S. (1989) Conditioning stochastic daily precipitation models on total monthly precipitation. Water Resour. Res. 23, 1429-1439.
    • (1989) Water Resour. Res. , vol.23 , pp. 1429-1439
    • Wilks, D.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.