메뉴 건너뛰기




Volumn 76, Issue 22, 2010, Pages 7491-7499

New insights into the fructosyltransferase activity of schwanniomyces occidentalis β-fructofuranosidase, emerging from nonconventional codon usage and directed mutation

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE SITE; AMINO ACID SEQUENCE; CATALYTIC EFFICIENCIES; CODON USAGE; DIRECTED MUTATION; FRUCTANS; FRUCTO-OLIGOSACCHARIDES; FRUCTOSYLTRANSFERASE; KESTOSE; PREBIOTICS; SCHWANNIOMYCES OCCIDENTALIS; TRANSFRUCTOSYLATION REACTIONS; WILD-TYPE ENZYMES;

EID: 78649710607     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.01614-10     Document Type: Article
Times cited : (39)

References (36)
  • 1
    • 0026011016 scopus 로고
    • Isolation of a new gene (SWA2) encoding an alpha amylase from Schwanniomyces occidentalis and its expression in Saccharomyces cerevisiae
    • Abarca, D., M. Fernández-Lobato, L. del Pozo, and A. Jiménez. 1991. Isolation of a new gene (SWA2) encoding an alpha amylase from Schwanniomyces occidentalis and its expression in Saccharomyces cerevisiae. FEBS Lett. 279:41-44.
    • (1991) FEBS Lett. , vol.279 , pp. 41-44
    • Abarca, D.1    Fernández-Lobato, M.2    Del Pozo, L.3    Jiménez, A.4
  • 2
    • 2442458877 scopus 로고    scopus 로고
    • The three-dimenisonal structure of invertase (β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases
    • Alberto, F., C. Bignon, G. Sulzenbacher, B. Henrissat, and M. Czjzek. 2004. The three-dimenisonal structure of invertase (β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J. Biol. Chem. 279: 18903-18910.
    • (2004) J. Biol. Chem. , vol.279 , pp. 18903-18910
    • Alberto, F.1    Bignon, C.2    Sulzenbacher, G.3    Henrissat, B.4    Czjzek, M.5
  • 3
    • 33646253657 scopus 로고    scopus 로고
    • Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose
    • Alberto, F., E. Jordi, B. Henrissat, and M. Czjzek. 2006. Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Biochem. J. 395:457-462.
    • (2006) Biochem. J. , vol.395 , pp. 457-462
    • Alberto, F.1    Jordi, E.2    Henrissat, B.3    Czjzek, M.4
  • 4
    • 56949095609 scopus 로고    scopus 로고
    • An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase
    • Altenbach, D., E. Rudiño-Pineira, C. Olvera, T. Boller, A. Wiemken, and T. Ritsema. 2009. An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase. Plant Mol. Biol. 69:47-56.
    • (2009) Plant Mol. Biol. , vol.69 , pp. 47-56
    • Altenbach, D.1    Rudino-Pineira, E.2    Olvera, C.3    Boller, T.4    Wiemken, A.5    Ritsema, T.6
  • 6
    • 77951530543 scopus 로고    scopus 로고
    • Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding
    • á lvaro-Benito, M., A. Polo, B. González, M. Fernández-Lobato, and J. Sanz- Aparicio. 2010. Structural and kinetic analysis of Schwanniomyces occidentalis invertase reveals a new oligomerization pattern and the role of its supplementary domain in substrate binding. J. Biol. Chem. 285:13930-13941.
    • (2010) J. Biol. Chem. , vol.285 , pp. 13930-13941
    • Álvaro-Benito, M.1    Polo, A.2    González, B.3    Fernández- Lobato, M.4    Sanz- Aparicio, J.5
  • 7
    • 0039848317 scopus 로고    scopus 로고
    • Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotropicus levansucrase affects sucrose hydrolysis, but not enzyme specificity
    • Batista, F. R., L. Hernández, J. R. Fernández, J. Arrieta, C. Menéndez, R. Gómez, Y. Támbara, and T. Pons. 1999. Substitution of Asp-309 by Asn in the Arg-Asp-Pro (RDP) motif of Acetobacter diazotropicus levansucrase affects sucrose hydrolysis, but not enzyme specificity. Biochem. J. 337:503-506.
    • (1999) Biochem. J. , vol.337 , pp. 503-506
    • Batista, F.R.1    Hernández, L.2    Fernández, J.R.3    Arrieta, J.4    Menéndez, C.5    Gómez, R.6    Támbara, Y.7    Pons, T.8
  • 9
    • 0025304231 scopus 로고
    • Expression and regulation of glucoamylase from the yeast Schwanniomyces castelli
    • Dowhanick, T. M., I. Russell, S. W. Scherer, G. G. Stewart, and V. L. Seligy. 1990. Expression and regulation of glucoamylase from the yeast Schwanniomyces castelli. J. Bacteriol. 172:2360-2366.
    • (1990) J. Bacteriol. , Issue.172 , pp. 2360-2366
    • Dowhanick, T.M.1    Russell, I.2    Scherer, S.W.3    Stewart, G.G.4    Seligy, V.L.5
  • 11
    • 0033399634 scopus 로고    scopus 로고
    • The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution
    • Goetz, M., and T. Roitsch. 1999. The different pH optima and substrate specificities of extracellular and vacuolar invertases from plants are determined by a single amino-acid substitution. Plant J. 20:707-711.
    • (1999) Plant J. , vol.20 , pp. 707-711
    • Goetz, M.1    Roitsch, T.2
  • 12
    • 67651149818 scopus 로고    scopus 로고
    • Biochemical characterization of aβ-fructofuranosidase from Rhodotorula dairenensis with transfructosylating activity
    • Gutiérrez-Alonso, P., L. Fernández-Arrojo, F. J. Plou, and M. Fernández- Lobato. 2009. Biochemical characterization of aβ-fructofuranosidase from Rhodotorula dairenensis with transfructosylating activity. FEMS Yeast Res. 9:768-773.
    • (2009) FEMS Yeast Res. , vol.9 , pp. 768-773
    • Gutiérrez-Alonso, P.1    Fernández-Arrojo, L.2    Plou, F.J.3    Fernández-Lobato, M.4
  • 13
    • 0038142193 scopus 로고    scopus 로고
    • Development of a reporter system for the yeast Schwanniomyces occidentalis: Influence of DNA composition and codon usage
    • Janatova, I., P. Costaglioli, J. Wesche, J. M. Masson, and E. Meilhoc. 2003. Development of a reporter system for the yeast Schwanniomyces occidentalis: Influence of DNA composition and codon usage. Yeast 20:687-701.
    • (2003) Yeast , vol.20 , pp. 687-701
    • Janatova, I.1    Costaglioli, P.2    Wesche, J.3    Masson, J.M.4    Meilhoc, E.5
  • 14
    • 84889120137 scopus 로고
    • Improved methods for building protein models in electron density maps and the location of errors in these models
    • Jones, T. A., J. Y. Zou, S. W. Cowan, and M. Kjeldgaard. 1991. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47:110-119.
    • (1991) Acta Crystallogr. A , vol.47 , pp. 110-119
    • Jones, T.A.1    Zou, J.Y.2    Cowan, S.W.3    Kjeldgaard, M.4
  • 15
    • 0029881445 scopus 로고    scopus 로고
    • CUG codons in Candida spp
    • Jukes, T. H., and S. Osawa. 1996. CUG codons in Candida spp. J. Mol. Evol. 42:321-322.
    • (1996) J. Mol. Evol. , vol.42 , pp. 321-322
    • Jukes, T.H.1    Osawa, S.2
  • 16
    • 0036948297 scopus 로고    scopus 로고
    • Applications of inulin and oligofructose in health and nutrition
    • Kaur, N., and A. K. Gupta. 2002. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 27:703-714.
    • (2002) J. Biosci. , vol.27 , pp. 703-714
    • Kaur, N.1    Gupta, A.K.2
  • 18
    • 0024725092 scopus 로고
    • Cloning and sequence analysis of the gene encoding invertase from the yeast Schwanniomyces occidentalis
    • Klein, R. D., R. A. Poorman, M. A. Favreau, M. H. Shea, N. T. Hatzenbuhler, and S. C. Nulf. 1989. Cloning and sequence analysis of the gene encoding invertase from the yeast Schwanniomyces occidentalis. Curr. Genet. 16:145-152.
    • (1989) Curr. Genet. , vol.16 , pp. 145-152
    • Klein, R.D.1    Poorman, R.A.2    Favreau, M.A.3    Shea, M.H.4    Hatzenbuhler, N.T.5    Nulf, S.C.6
  • 19
    • 62349102392 scopus 로고    scopus 로고
    • Structural insights into glycoside hydrolase family 32 and 68 enzymes: Functional implications
    • Lammens, W., K. Le Roy, L. Schroeven, A. Van Laere, A. Rabijns, and W. Van den Ende. 2009. Structural insights into glycoside hydrolase family 32 and 68 enzymes: Functional implications. J. Exp. Bot. 60:727-740.
    • (2009) J. Exp. Bot. , vol.60 , pp. 727-740
    • Lammens, W.1    Le Roy, K.2    Schroeven, L.3    Van Laere, L.A.4    Rabijns, A.5    Van Den Ende, W.6
  • 20
    • 33749261964 scopus 로고    scopus 로고
    • Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes
    • Lin, S. Y., J. K. Byrnes, J. K. Hwang, and W. H. Li. 2006. Codon-usage bias versus gene conversion in the evolution of yeast duplicate genes. Proc. Natl. Acad. Sci. U. S. A. 103:14412-14416.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 14412-14416
    • Lin, S.Y.1    Byrnes, J.K.2    Hwang, J.K.3    Li, W.H.4
  • 23
    • 0033989881 scopus 로고    scopus 로고
    • Metabolization ofβ-(2,6)- linked fructose-oligosaccharides by different bifidobateria
    • Marx, S. P., S. Winkler, and W. Hartmeier. 2000. Metabolization ofβ-(2,6)- linked fructose-oligosaccharides by different bifidobateria. FEMS Microbiol. Lett. 182:163-169.
    • (2000) FEMS Microbiol. Lett. , vol.182 , pp. 163-169
    • Marx, S.P.1    Winkler, S.2    Hartmeier, W.3
  • 24
    • 0242490546 scopus 로고    scopus 로고
    • Structural framework of fructosyltransfer in Bacillus subtilis levansucrase
    • Meng, G., and K. Fütterer. 2003. Structural framework of fructosyltransfer in Bacillus subtilis levansucrase. Nat. Struct. Biol. 10:935-941.
    • (2003) Nat. Struct. Biol. , vol.10 , pp. 935-941
    • Meng, G.1    Fütterer, K.2
  • 25
    • 33645126396 scopus 로고    scopus 로고
    • Evolution of the genetic code in yeasts
    • Miranda, I., R. Silva, and M. A. S. Santos. 2006. Evolution of the genetic code in yeasts. Yeast 23:203-213.
    • (2006) Yeast , vol.23 , pp. 203-213
    • Miranda, I.1    Silva, R.2    Santos, M.A.S.3
  • 28
    • 1042291218 scopus 로고    scopus 로고
    • Three acidic residues are at the active site of a β-propeller architecture in glycoside hydrolase families 32,43, 62 and 68
    • Pons, T., D. G. Naumoff, C. Martínez-Fleites, and L. Hernández. 2004. Three acidic residues are at the active site of a β-propeller architecture in glycoside hydrolase families 32, 43, 62 and 68. Proteins 54:424-432.
    • (2004) Proteins , vol.54 , pp. 424-432
    • Pons, T.1    Naumoff, D.G.2    Martínez-Fleites, C.3    Hernández, L.4
  • 29
    • 17544374099 scopus 로고    scopus 로고
    • Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase
    • Reddy, A., and F. Maley. 1996. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J. Biol. Chem. 271:13953-13958.
    • (1996) J. Biol. Chem. , vol.271 , pp. 13953-13958
    • Reddy, A.1    Maley, F.2
  • 30
    • 33749234777 scopus 로고    scopus 로고
    • Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box
    • Ritsema, T., L. Hernández, A. Verhaar, D. Altenbach, T. Boller, A. Wiemken, and S. Smeekens. 2006. Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant J. 48:228-237.
    • (2006) Plant J. , vol.48 , pp. 228-237
    • Ritsema, T.1    Hernández, L.2    Verhaar, A.3    Altenbach, D.4    Boller, T.5    Wiemken, A.6    Smeekens, S.7
  • 31
    • 9644294464 scopus 로고    scopus 로고
    • Fructooligosac charide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202
    • Sangeetha, P. T., M. N. Ramesh, and S. G. Prapulla. 2005. Fructooligosac charide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochem. 40:1085-1088.
    • (2005) Process Biochem. , vol.40 , pp. 1085-1088
    • Sangeetha, P.T.1    Ramesh, M.N.2    Prapulla, S.G.3
  • 32
    • 55649093367 scopus 로고    scopus 로고
    • Transforming wheat vacuolar invertase into a high affinity sucrose:Sucrose 1-fructosyltransferase
    • Schroeven, L., W. Lammens, A. Van Laere, and W. Van den Ende. 2008. Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase. New Phytol. 180:822-831.
    • (2008) New Phytol. , vol.180 , pp. 822-831
    • Schroeven, L.1    Lammens, W.2    Van Laere, A.3    Van Den Ende, W.4
  • 33
    • 0036224156 scopus 로고    scopus 로고
    • Alternative CUG codon usage (Ser for Leu) in Pichia farinosa and the effect of a mutated killer gene in Saccharomyces cerevisiae
    • Suzuki, C., T. Kashiwagi, and K. Hirayama. 2002. Alternative CUG codon usage (Ser for Leu) in Pichia farinosa and the effect of a mutated killer gene in Saccharomyces cerevisiae. Protein Eng. 15:251-255.
    • (2002) Protein Eng. , vol.15 , pp. 251-255
    • Suzuki, C.1    Kashiwagi, T.2    Hirayama, K.3
  • 34
    • 13844284203 scopus 로고    scopus 로고
    • X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: Fructan 1-exohydrolase IIa of Cichorium intybus
    • Verhaest, M., W. Van den Ende, K. Le Roy, C. J. De Ranter, A. Van Laere, and A. Rabijns. 2005. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: Fructan 1-exohydrolase IIa of Cichorium intybus. Plant J. 41:400-411.
    • (2005) Plant J. , vol.41 , pp. 400-411
    • Verhaest, M.1    Van Den Ende, W.2    Le Roy, K.3    De Ranter, C.J.4    Van Laere, A.5    Rabijns, A.6
  • 36
    • 33847344810 scopus 로고    scopus 로고
    • Insights into the fine architecture of the active site of chycory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor
    • Verhaest, M., W. Lammens, K. Le Roy, C. J. De Ranter, A. Van Laere, A. Rabijns, and W. Van den Ende. 2007. Insights into the fine architecture of the active site of chycory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol. 174:90-100.
    • (2007) New Phytol. , vol.174 , pp. 90-100
    • Verhaest, M.1    Lammens, W.2    Le Roy, K.3    De Ranter, C.J.4    Van Laere, A.5    Rabijns, A.6    Van Den Ende, W.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.