메뉴 건너뛰기




Volumn 24, Issue 1, 2011, Pages 93-102

An agent-based framework for distributed learning

Author keywords

Data reduction; Distributed data mining; Distributed learning; Multi agent system

Indexed keywords

AGENT BASED; AGENT COLLABORATION; AGENT-BASED FRAMEWORK; COMPACT REPRESENTATION; COMPUTATIONAL EXPERIMENT; DISTRIBUTED DATA; DISTRIBUTED DATA MINING; DISTRIBUTED LEARNING; FEATURE SELECTION; LEARNING PROCESS; META-LEARNING TECHNIQUES;

EID: 78649643606     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2010.07.003     Document Type: Article
Times cited : (13)

References (55)
  • 2
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science Irvine, CA
    • A. Asuncion, and D.J. Newman UCI Machine Learning Repository 2007 University of California, School of Information and Computer Science Irvine, CA
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 0034313634 scopus 로고    scopus 로고
    • Adaptive integration image segmentation and object recognition
    • B. Bhanu, and J. Peng Adaptive integration image segmentation and object recognition IEEE Transactions on Systems, Man and Cybernetics 30 4 2000 427 441
    • (2000) IEEE Transactions on Systems, Man and Cybernetics , vol.30 , Issue.4 , pp. 427-441
    • Bhanu, B.1    Peng, J.2
  • 6
    • 19544373409 scopus 로고    scopus 로고
    • A framework for learning from distributed data using sufficient statistics and its application to learning decision trees
    • D. Caragea, A. Silvescu, and V. Honavar A framework for learning from distributed data using sufficient statistics and its application to learning decision trees International Journal of Hybrid Intelligent Systems 1 1-2 2003 80 89
    • (2003) International Journal of Hybrid Intelligent Systems , vol.1 , Issue.12 , pp. 80-89
    • Caragea, D.1    Silvescu, A.2    Honavar, V.3
  • 12
    • 29144531645 scopus 로고    scopus 로고
    • Model aggregating for prediction with discrete Bayesian networks
    • D. Dash, and G.F. Cooper Model aggregating for prediction with discrete Bayesian networks Journal of Machine Learning Research 5 2001 1177 1203
    • (2001) Journal of Machine Learning Research , vol.5 , pp. 1177-1203
    • Dash, D.1    Cooper, G.F.2
  • 13
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash, and H. Liu Feature selection for classification Intelligence Data Analysis 1 3 1997 131 156
    • (1997) Intelligence Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 17
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: A scaling up approach
    • S. Garcia, J.R Cano, and F. Herrera A memetic algorithm for evolutionary prototype selection: a scaling up approach Pattern Recognition 41 8 2008 2693 2709
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2693-2709
    • Garcia, S.1    Cano, J.R.2    Herrera, F.3
  • 22
    • 0002113656 scopus 로고    scopus 로고
    • Social learning algorithm as a tool for solving some difficult scheduling problems
    • P. Jdrzejowicz Social learning algorithm as a tool for solving some difficult scheduling problems Foundation of Computing and Decision Sciences 24 1999 51 66
    • (1999) Foundation of Computing and Decision Sciences , vol.24 , pp. 51-66
    • Jdrzejowicz, P.1
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artificial Intelligence 12 1997 273 324
    • (1997) Artificial Intelligence , vol.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 28
    • 0036495711 scopus 로고    scopus 로고
    • Boosting algorithms for parallel and distributed learning
    • A. Lazarevic, and Obradovic Boosting algorithms for parallel and distributed learning Distributed and Parallel Databases 11 2 2002 203 229
    • (2002) Distributed and Parallel Databases , vol.11 , Issue.2 , pp. 203-229
    • Lazarevic, A.1    Obradovic2
  • 32
    • 42949151461 scopus 로고    scopus 로고
    • Novel ensemble learning based on multiple section distribution in distributed environment
    • F. Min Novel ensemble learning based on multiple section distribution in distributed environment Journal of Systems Engineering and Electronics 19 2 2008 377 380
    • (2008) Journal of Systems Engineering and Electronics , vol.19 , Issue.2 , pp. 377-380
    • Min, F.1
  • 33
    • 58149475488 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • L. Nanni, and A. Lumini Particle swarm optimization for prototype reduction Neurocomputing 72 46 2009 1092 1097
    • (2009) Neurocomputing , vol.72 , Issue.46 , pp. 1092-1097
    • Nanni, L.1    Lumini, A.2
  • 38
    • 58249086559 scopus 로고    scopus 로고
    • Reducing the dimensionality of dissimilarity space embedding graph kernels
    • K. Riesen, and H. Bunke Reducing the dimensionality of dissimilarity space embedding graph kernels Engineering Applications of Artificial Intelligence 22 1 2009 48 56
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.1 , pp. 48-56
    • Riesen, K.1    Bunke, H.2
  • 39
    • 34748818341 scopus 로고    scopus 로고
    • Selecting representative examples and attributes by a genetic algorithm
    • A. Rozsypal, and M. Kubat Selecting representative examples and attributes by a genetic algorithm Intelligent Data Analysis 7 4 2003 291 304
    • (2003) Intelligent Data Analysis , vol.7 , Issue.4 , pp. 291-304
    • Rozsypal, A.1    Kubat, M.2
  • 40
    • 85031805477 scopus 로고
    • Extending learning to multiple agents: Issues and a model for multi-agent machine learning (ma-ml)
    • S. Sian Extending learning to multiple agents: issues and a model for multi-agent machine learning (ma-ml) Y. Kodratoff, Machine LearningEWSL-91 1991 Springer-Verlag 440 456
    • (1991) Machine LearningEWSL-91 , pp. 440-456
    • Sian, S.1
  • 43
    • 0012657799 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithm
    • Skalak, D.B., 1994. Prototype and feature selection by sampling and random mutation hill climbing algorithm. In: Proceedings of the International Conference on Machine Learning, pp. 293301.
    • (1994) Proceedings of the International Conference on Machine Learning , pp. 293-301
    • Skalak, D.B.1
  • 46
    • 0043159634 scopus 로고    scopus 로고
    • Asynchronous teams: Co-operation schemes for autonomous. Computer-based agents
    • Carnegie Mellon University, Pittsburgh
    • Talukdar, S., Baerentzen, L., Gove, A., P. de Souza, 1996. Asynchronous teams: co-operation schemes for autonomous. Computer-based agents. Technical Report EDRC 18-59-96, Carnegie Mellon University, Pittsburgh.
    • (1996) Technical Report EDRC 18-59-96
    • Talukdar, S.1    Baerentzen, L.2    Gove, A.3    De Souza, P.4
  • 49
    • 2342557114 scopus 로고    scopus 로고
    • Clustering classifiers for knowledge discovery form physically distributed databases
    • G. Tsoumakas, L. Angelis, and I. Vlahavas Clustering classifiers for knowledge discovery form physically distributed databases Data & Knowledge Engineering 49 2004 223 242
    • (2004) Data & Knowledge Engineering , vol.49 , pp. 223-242
    • Tsoumakas, G.1    Angelis, L.2    Vlahavas, I.3
  • 50
    • 71549117600 scopus 로고    scopus 로고
    • Two cooperative ant colonies for feature selection using fuzzy models
    • S.M. Viera, J.M.C. Sousa, and T.A. Runkler Two cooperative ant colonies for feature selection using fuzzy models Expert Systems with Applications 37 2010 2714 2723
    • (2010) Expert Systems with Applications , vol.37 , pp. 2714-2723
    • Viera, S.M.1    Sousa, J.M.C.2    Runkler, T.A.3
  • 52
    • 33748451273 scopus 로고    scopus 로고
    • Distributed feature extraction in a P2P settinga case study
    • M. Wurst, and K. Morik Distributed feature extraction in a P2P settinga case study Future Generation Computer Systems 23 1 2007 69 75
    • (2007) Future Generation Computer Systems , vol.23 , Issue.1 , pp. 69-75
    • Wurst, M.1    Morik, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.