-
1
-
-
34247527731
-
Male and female Drosophila germline stem cells: two versions of immortality
-
Fuller M.T., Spradling A.C. Male and female Drosophila germline stem cells: two versions of immortality. Science 2007, 316:402-404.
-
(2007)
Science
, vol.316
, pp. 402-404
-
-
Fuller, M.T.1
Spradling, A.C.2
-
2
-
-
46049099444
-
Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal
-
Leatherman J.L., Dinardo S. Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 2008, 3:44-54.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 44-54
-
-
Leatherman, J.L.1
Dinardo, S.2
-
3
-
-
0142136097
-
Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells
-
Chen D., McKearin D. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol 2003, 13:1786-1791.
-
(2003)
Curr Biol
, vol.13
, pp. 1786-1791
-
-
Chen, D.1
McKearin, D.2
-
4
-
-
28544450193
-
Stem cell self-renewal controlled by chromatin remodeling factors
-
Xi R., Xie T. Stem cell self-renewal controlled by chromatin remodeling factors. Science 2005, 310:1487-1489.
-
(2005)
Science
, vol.310
, pp. 1487-1489
-
-
Xi, R.1
Xie, T.2
-
5
-
-
41649090760
-
Otefin, a nuclear membrane protein, determines the fate of germline stem cells in Drosophila via interaction with Smad complexes
-
Jiang X., Xia L., Chen D., Yang Y., Huang H., Yang L., Zhao Q., Shen L., Wang J., Chen D. Otefin, a nuclear membrane protein, determines the fate of germline stem cells in Drosophila via interaction with Smad complexes. Dev Cell 2008, 14:494-506.
-
(2008)
Dev Cell
, vol.14
, pp. 494-506
-
-
Jiang, X.1
Xia, L.2
Chen, D.3
Yang, Y.4
Huang, H.5
Yang, L.6
Zhao, Q.7
Shen, L.8
Wang, J.9
Chen, D.10
-
6
-
-
67650899088
-
EIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary
-
Shen R., Weng C., Yu J., Xie T. eIF4A controls germline stem cell self-renewal by directly inhibiting BAM function in the Drosophila ovary. Proc Natl Acad Sci USA 2009, 106:11623-11628.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 11623-11628
-
-
Shen, R.1
Weng, C.2
Yu, J.3
Xie, T.4
-
7
-
-
77949891664
-
HOW is required for stem cell maintenance in the Drosophila testis and for the onset of transit-amplifying divisions
-
Monk A.C., Siddall N.A., Volk T., Fraser B., Quinn L.M., McLaughlin E.A., Hime G.R. HOW is required for stem cell maintenance in the Drosophila testis and for the onset of transit-amplifying divisions. Cell Stem Cell 2010, 6:348-360.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 348-360
-
-
Monk, A.C.1
Siddall, N.A.2
Volk, T.3
Fraser, B.4
Quinn, L.M.5
McLaughlin, E.A.6
Hime, G.R.7
-
8
-
-
58149398016
-
Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny
-
Buszczak M., Paterno S., Spradling A.C. Drosophila stem cells share a common requirement for the histone H2B ubiquitin protease scrawny. Science 2009, 323:248-251.
-
(2009)
Science
, vol.323
, pp. 248-251
-
-
Buszczak, M.1
Paterno, S.2
Spradling, A.C.3
-
9
-
-
31144450299
-
Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway
-
Xi R., Doan C., Liu D., Xie T. Pelota controls self-renewal of germline stem cells by repressing a Bam-independent differentiation pathway. Development 2005, 132:5365-5374.
-
(2005)
Development
, vol.132
, pp. 5365-5374
-
-
Xi, R.1
Doan, C.2
Liu, D.3
Xie, T.4
-
10
-
-
71449116210
-
Effete-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila
-
Chen D., Wang Q., Huang H., Xia L., Jiang X., Kan L., Sun Q. Effete-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila. Development 2009, 136:4133-4142.
-
(2009)
Development
, vol.136
, pp. 4133-4142
-
-
Chen, D.1
Wang, Q.2
Huang, H.3
Xia, L.4
Jiang, X.5
Kan, L.6
Sun, Q.7
-
11
-
-
22144492576
-
The expression profile of purified Drosophila germline stem cells
-
Kai T., Williams D., Spradling A.C. The expression profile of purified Drosophila germline stem cells. Dev Biol 2005, 283:486-502.
-
(2005)
Dev Biol
, vol.283
, pp. 486-502
-
-
Kai, T.1
Williams, D.2
Spradling, A.C.3
-
12
-
-
33646249818
-
Novel regulators revealed by profiling Drosophila testis stem cells within their niche
-
Terry N.A., Tulina N., Matunis E., DiNardo S. Novel regulators revealed by profiling Drosophila testis stem cells within their niche. Dev Biol 2006, 294:246-257.
-
(2006)
Dev Biol
, vol.294
, pp. 246-257
-
-
Terry, N.A.1
Tulina, N.2
Matunis, E.3
DiNardo, S.4
-
13
-
-
26444527459
-
The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals
-
Decotto E., Spradling A.C. The Drosophila ovarian and testis stem cell niches: similar somatic stem cells and signals. Dev Cell 2005, 9:501-510.
-
(2005)
Dev Cell
, vol.9
, pp. 501-510
-
-
Decotto, E.1
Spradling, A.C.2
-
14
-
-
40849111730
-
The JAK/STAT pathway positively regulates DPP signaling in the Drosophila germline stem cell niche
-
Wang L., Li Z., Cai Y. The JAK/STAT pathway positively regulates DPP signaling in the Drosophila germline stem cell niche. J Cell Biol 2008, 180:721-728.
-
(2008)
J Cell Biol
, vol.180
, pp. 721-728
-
-
Wang, L.1
Li, Z.2
Cai, Y.3
-
15
-
-
70449631033
-
Scratching the niche that controls Caenorhabditis elegans germline stem cells
-
Byrd D.T., Kimble J. Scratching the niche that controls Caenorhabditis elegans germline stem cells. Semin Cell Dev Biol 2009, 20:1107-1113.
-
(2009)
Semin Cell Dev Biol
, vol.20
, pp. 1107-1113
-
-
Byrd, D.T.1
Kimble, J.2
-
16
-
-
7744227509
-
FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline
-
Lamont L.B., Crittenden S.L., Bernstein D., Wickens M., Kimble J. FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 2004, 7:697-707.
-
(2004)
Dev Cell
, vol.7
, pp. 697-707
-
-
Lamont, L.B.1
Crittenden, S.L.2
Bernstein, D.3
Wickens, M.4
Kimble, J.5
-
17
-
-
0037030730
-
A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans
-
Crittenden S.L., Bernstein D.S., Bachorik J.L., Thompson B.E., Gallegos M., Petcherski A.G., Moulder G., Barstead R., Wickens M., Kimble J. A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 2002, 417:660-663.
-
(2002)
Nature
, vol.417
, pp. 660-663
-
-
Crittenden, S.L.1
Bernstein, D.S.2
Bachorik, J.L.3
Thompson, B.E.4
Gallegos, M.5
Petcherski, A.G.6
Moulder, G.7
Barstead, R.8
Wickens, M.9
Kimble, J.10
-
18
-
-
77950504633
-
Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment
-
Nakagawa T., Sharma M., Nabeshima Y., Braun R.E., Yoshida S. Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 2010, 328:62-67.
-
(2010)
Science
, vol.328
, pp. 62-67
-
-
Nakagawa, T.1
Sharma, M.2
Nabeshima, Y.3
Braun, R.E.4
Yoshida, S.5
-
19
-
-
33846605062
-
Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis
-
Nakagawa T., Nabeshima Y., Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 2007, 12:195-206.
-
(2007)
Dev Cell
, vol.12
, pp. 195-206
-
-
Nakagawa, T.1
Nabeshima, Y.2
Yoshida, S.3
-
20
-
-
54949102311
-
Regulation of spermatogonial stem cell self-renewal in mammals
-
Oatley J.M., Brinster R.L. Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 2008, 24:263-286.
-
(2008)
Annu Rev Cell Dev Biol
, vol.24
, pp. 263-286
-
-
Oatley, J.M.1
Brinster, R.L.2
-
21
-
-
70249140884
-
The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells
-
Sada A., Suzuki A., Suzuki H., Saga Y. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 2009, 325:1394-1398.
-
(2009)
Science
, vol.325
, pp. 1394-1398
-
-
Sada, A.1
Suzuki, A.2
Suzuki, H.3
Saga, Y.4
-
22
-
-
70350228794
-
Nodal signaling via an autocrine pathway promotes proliferation of mouse spermatogonial stem/progenitor cells through Smad2/3 and Oct-4 activation
-
He Z., Jiang J., Kokkinaki M., Dym M. Nodal signaling via an autocrine pathway promotes proliferation of mouse spermatogonial stem/progenitor cells through Smad2/3 and Oct-4 activation. Stem Cells 2009, 27:2580-2590.
-
(2009)
Stem Cells
, vol.27
, pp. 2580-2590
-
-
He, Z.1
Jiang, J.2
Kokkinaki, M.3
Dym, M.4
-
23
-
-
31044436808
-
Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate
-
Naughton C.K., Jain S., Strickland A.M., Gupta A., Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 2006, 74:314-321.
-
(2006)
Biol Reprod
, vol.74
, pp. 314-321
-
-
Naughton, C.K.1
Jain, S.2
Strickland, A.M.3
Gupta, A.4
Milbrandt, J.5
-
24
-
-
67650828882
-
The spermatogonial stem cell niche
-
de Rooij D.G. The spermatogonial stem cell niche. Microsc Res Tech 2009, 72:580-585.
-
(2009)
Microsc Res Tech
, vol.72
, pp. 580-585
-
-
de Rooij, D.G.1
-
25
-
-
17844393110
-
Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia
-
Goriely A., McVean G.A., van Pelt A.M., O'Rourke A.W., Wall S.A., de Rooij D.G., Wilkie A.O. Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci USA 2005, 102:6051-6056.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 6051-6056
-
-
Goriely, A.1
McVean, G.A.2
van Pelt, A.M.3
O'Rourke, A.W.4
Wall, S.A.5
de Rooij, D.G.6
Wilkie, A.O.7
-
26
-
-
33646696207
-
The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage
-
Yoshida S., Sukeno M., Nakagawa T., Ohbo K., Nagamatsu G., Suda T., Nabeshima Y. The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 2006, 133:1495-1505.
-
(2006)
Development
, vol.133
, pp. 1495-1505
-
-
Yoshida, S.1
Sukeno, M.2
Nakagawa, T.3
Ohbo, K.4
Nagamatsu, G.5
Suda, T.6
Nabeshima, Y.7
-
27
-
-
54949152307
-
Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin
-
Kanatsu-Shinohara M., Takehashi M., Takashima S., Lee J., Morimoto H., Chuma S., Raducanu A., Nakatsuji N., Fassler R., Shinohara T. Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 2008, 3:533-542.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 533-542
-
-
Kanatsu-Shinohara, M.1
Takehashi, M.2
Takashima, S.3
Lee, J.4
Morimoto, H.5
Chuma, S.6
Raducanu, A.7
Nakatsuji, N.8
Fassler, R.9
Shinohara, T.10
-
28
-
-
33748432696
-
Soma-germline interactions coordinate homeostasis and growth in the Drosophila gonad
-
Gilboa L., Lehmann R. Soma-germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature 2006, 443:97-100.
-
(2006)
Nature
, vol.443
, pp. 97-100
-
-
Gilboa, L.1
Lehmann, R.2
-
29
-
-
0036796861
-
Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells
-
Schulz C., Wood C.G., Jones D.L., Tazuke S.I., Fuller M.T. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 2002, 129:4523-4534.
-
(2002)
Development
, vol.129
, pp. 4523-4534
-
-
Schulz, C.1
Wood, C.G.2
Jones, D.L.3
Tazuke, S.I.4
Fuller, M.T.5
-
30
-
-
0034641905
-
Somatic control over the germline stem cell lineage during Drosophila spermatogenesis
-
Tran J., Brenner T.J., DiNardo S. Somatic control over the germline stem cell lineage during Drosophila spermatogenesis. Nature 2000, 407:754-757.
-
(2000)
Nature
, vol.407
, pp. 754-757
-
-
Tran, J.1
Brenner, T.J.2
DiNardo, S.3
-
31
-
-
0034641952
-
Somatic support cells restrict germline stem cell self-renewal and promote differentiation
-
Kiger A.A., White-Cooper H., Fuller M.T. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature 2000, 407:750-754.
-
(2000)
Nature
, vol.407
, pp. 750-754
-
-
Kiger, A.A.1
White-Cooper, H.2
Fuller, M.T.3
-
32
-
-
0037036134
-
Germline stem cells anchored by adherens junctions in the Drosophila ovary niches
-
Song X., Zhu C.H., Doan C., Xie T. Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 2002, 296:1855-1857.
-
(2002)
Science
, vol.296
, pp. 1855-1857
-
-
Song, X.1
Zhu, C.H.2
Doan, C.3
Xie, T.4
-
33
-
-
50649121260
-
Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis
-
Voog J., D'Alterio C., Jones D.L. Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature 2008, 454:1132-1136.
-
(2008)
Nature
, vol.454
, pp. 1132-1136
-
-
Voog, J.1
D'Alterio, C.2
Jones, D.L.3
-
34
-
-
50249134294
-
Integrins control the positioning and proliferation of follicle stem cells in the Drosophila ovary
-
O'Reilly A.M., Lee H.H., Simon M.A. Integrins control the positioning and proliferation of follicle stem cells in the Drosophila ovary. J Cell Biol 2008, 182:801-815.
-
(2008)
J Cell Biol
, vol.182
, pp. 801-815
-
-
O'Reilly, A.M.1
Lee, H.H.2
Simon, M.A.3
-
35
-
-
73349086253
-
Drosophila glypicans regulate the germline stem cell niche
-
Hayashi Y., Kobayashi S., Nakato H. Drosophila glypicans regulate the germline stem cell niche. J Cell Biol 2009, 187:473-480.
-
(2009)
J Cell Biol
, vol.187
, pp. 473-480
-
-
Hayashi, Y.1
Kobayashi, S.2
Nakato, H.3
-
36
-
-
70350166294
-
The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary
-
Guo Z., Wang Z. The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary. Development 2009, 136:3627-3635.
-
(2009)
Development
, vol.136
, pp. 3627-3635
-
-
Guo, Z.1
Wang, Z.2
-
38
-
-
76649123646
-
Progression from a stem cell-like state to early differentiation in the C. elegans germ line
-
Cinquin O., Crittenden S.L., Morgan D.E., Kimble J. Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci USA 2010, 107:2048-2053.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 2048-2053
-
-
Cinquin, O.1
Crittenden, S.L.2
Morgan, D.E.3
Kimble, J.4
-
39
-
-
67650892071
-
A 'latent niche' mechanism for tumor initiation
-
McGovern M., Voutev R., Maciejowski J., Corsi A.K., Hubbard E.J. A 'latent niche' mechanism for tumor initiation. Proc Natl Acad Sci USA 2009, 106:11617-11622.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 11617-11622
-
-
McGovern, M.1
Voutev, R.2
Maciejowski, J.3
Corsi, A.K.4
Hubbard, E.J.5
-
40
-
-
17944401554
-
Regulation of cell fate decision of undifferentiated spermatogonia by GDNF
-
Meng X., Lindahl M., Hyvonen M.E., Parvinen M., de Rooij D.G., Hess M.W., Raatikainen-Ahokas A., Sainio K., Rauvala H., Lakso M., et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000, 287:1489-1493.
-
(2000)
Science
, vol.287
, pp. 1489-1493
-
-
Meng, X.1
Lindahl, M.2
Hyvonen, M.E.3
Parvinen, M.4
de Rooij, D.G.5
Hess, M.W.6
Raatikainen-Ahokas, A.7
Sainio, K.8
Rauvala, H.9
Lakso, M.10
-
41
-
-
34648812826
-
A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis
-
Yoshida S., Sukeno M., Nabeshima Y. A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 2007, 317:1722-1726.
-
(2007)
Science
, vol.317
, pp. 1722-1726
-
-
Yoshida, S.1
Sukeno, M.2
Nabeshima, Y.3
-
42
-
-
67449164732
-
Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal
-
Oatley J.M., Oatley M.J., Avarbock M.R., Tobias J.W., Brinster R.L. Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal. Development 2009, 136:1191-1199.
-
(2009)
Development
, vol.136
, pp. 1191-1199
-
-
Oatley, J.M.1
Oatley, M.J.2
Avarbock, M.R.3
Tobias, J.W.4
Brinster, R.L.5
-
43
-
-
1842432407
-
Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries
-
Kai T., Spradling A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 2004, 428:564-569.
-
(2004)
Nature
, vol.428
, pp. 564-569
-
-
Kai, T.1
Spradling, A.2
-
44
-
-
2542583307
-
Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo
-
Brawley C., Matunis E. Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science 2004, 304:1331-1334.
-
(2004)
Science
, vol.304
, pp. 1331-1334
-
-
Brawley, C.1
Matunis, E.2
-
45
-
-
57349090222
-
Centrosome misorientation reduces stem cell division during ageing
-
Cheng J., Turkel N., Hemati N., Fuller M.T., Hunt A.J., Yamashita Y.M. Centrosome misorientation reduces stem cell division during ageing. Nature 2008, 456:599-604.
-
(2008)
Nature
, vol.456
, pp. 599-604
-
-
Cheng, J.1
Turkel, N.2
Hemati, N.3
Fuller, M.T.4
Hunt, A.J.5
Yamashita, Y.M.6
-
46
-
-
67849117206
-
Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis
-
Sheng X.R., Brawley C.M., Matunis E.L. Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell 2009, 5:191-203.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 191-203
-
-
Sheng, X.R.1
Brawley, C.M.2
Matunis, E.L.3
-
47
-
-
0037458114
-
Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8
-
Subramaniam K., Seydoux G. Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr Biol 2003, 13:134-139.
-
(2003)
Curr Biol
, vol.13
, pp. 134-139
-
-
Subramaniam, K.1
Seydoux, G.2
-
48
-
-
59649112776
-
Mouse differentiating spermatogonia can generate germinal stem cells in vivo
-
Barroca V., Lassalle B., Coureuil M., Louis J.P., Le Page F., Testart J., Allemand I., Riou L., Fouchet P. Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nat Cell Biol 2009, 11:190-196.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 190-196
-
-
Barroca, V.1
Lassalle, B.2
Coureuil, M.3
Louis, J.P.4
Le Page, F.5
Testart, J.6
Allemand, I.7
Riou, L.8
Fouchet, P.9
-
49
-
-
0032443562
-
A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal
-
Cox D.N., Chao A., Baker J., Chang L., Qiao D., Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 1998, 12:3715-3727.
-
(1998)
Genes Dev
, vol.12
, pp. 3715-3727
-
-
Cox, D.N.1
Chao, A.2
Baker, J.3
Chang, L.4
Qiao, D.5
Lin, H.6
-
50
-
-
70350238350
-
The biogenesis and function of PIWI proteins and piRNAs: progress and prospect
-
Thomson T., Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2009, 25:355-376.
-
(2009)
Annu Rev Cell Dev Biol
, vol.25
, pp. 355-376
-
-
Thomson, T.1
Lin, H.2
-
51
-
-
46149114866
-
PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans
-
Batista P.J., Ruby J.G., Claycomb J.M., Chiang R., Fahlgren N., Kasschau K.D., Chaves D.A., Gu W., Vasale J.J., Duan S., et al. PRG-1 and 21U-RNAs interact to form the piRNA complex required for fertility in C. elegans. Mol Cell 2008, 31:67-78.
-
(2008)
Mol Cell
, vol.31
, pp. 67-78
-
-
Batista, P.J.1
Ruby, J.G.2
Claycomb, J.M.3
Chiang, R.4
Fahlgren, N.5
Kasschau, K.D.6
Chaves, D.A.7
Gu, W.8
Vasale, J.J.9
Duan, S.10
-
52
-
-
45449118682
-
A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis
-
Wang G., Reinke V. A C. elegans Piwi, PRG-1, regulates 21U-RNAs during spermatogenesis. Curr Biol 2008, 18:861-867.
-
(2008)
Curr Biol
, vol.18
, pp. 861-867
-
-
Wang, G.1
Reinke, V.2
-
53
-
-
34047154356
-
A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish
-
Houwing S., Kamminga L.M., Berezikov E., Cronembold D., Girard A., van den Elst H., Filippov D.V., Blaser H., Raz E., Moens C.B., et al. A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in zebrafish. Cell 2007, 129:69-82.
-
(2007)
Cell
, vol.129
, pp. 69-82
-
-
Houwing, S.1
Kamminga, L.M.2
Berezikov, E.3
Cronembold, D.4
Girard, A.5
van den Elst, H.6
Filippov, D.V.7
Blaser, H.8
Raz, E.9
Moens, C.B.10
-
54
-
-
54349089563
-
Zili is required for germ cell differentiation and meiosis in zebrafish
-
Houwing S., Berezikov E., Ketting R.F. Zili is required for germ cell differentiation and meiosis in zebrafish. Embo J 2008, 27:2702-2711.
-
(2008)
Embo J
, vol.27
, pp. 2702-2711
-
-
Houwing, S.1
Berezikov, E.2
Ketting, R.F.3
-
55
-
-
0031239690
-
Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila
-
Deng W., Lin H. Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol 1997, 189:79-94.
-
(1997)
Dev Biol
, vol.189
, pp. 79-94
-
-
Deng, W.1
Lin, H.2
-
56
-
-
0141483737
-
Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome
-
Yamashita Y.M., Jones D.L., Fuller M.T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 2003, 301:1547-1550.
-
(2003)
Science
, vol.301
, pp. 1547-1550
-
-
Yamashita, Y.M.1
Jones, D.L.2
Fuller, M.T.3
-
57
-
-
33846607211
-
Asymmetric inheritance of mother versus daughter centrosome in stem cell division
-
Yamashita Y.M., Mahowald A.P., Perlin J.R., Fuller M.T. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 2007, 315:518-521.
-
(2007)
Science
, vol.315
, pp. 518-521
-
-
Yamashita, Y.M.1
Mahowald, A.P.2
Perlin, J.R.3
Fuller, M.T.4
-
58
-
-
67650641870
-
Interpreting spatial information and regulating mitosis in response to spindle orientation
-
Burke D.J. Interpreting spatial information and regulating mitosis in response to spindle orientation. Genes Dev 2009, 23:1613-1618.
-
(2009)
Genes Dev
, vol.23
, pp. 1613-1618
-
-
Burke, D.J.1
-
59
-
-
67649371121
-
Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells
-
Luo J., Megee S., Dobrinski I. Asymmetric distribution of UCH-L1 in spermatogonia is associated with maintenance and differentiation of spermatogonial stem cells. J Cell Physiol 2009, 220:460-468.
-
(2009)
J Cell Physiol
, vol.220
, pp. 460-468
-
-
Luo, J.1
Megee, S.2
Dobrinski, I.3
-
60
-
-
23644444460
-
Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila
-
LaFever L., Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 2005, 309:1071-1073.
-
(2005)
Science
, vol.309
, pp. 1071-1073
-
-
LaFever, L.1
Drummond-Barbosa, D.2
-
61
-
-
59049103731
-
Insulin levels control female germline stem cell maintenance via the niche in Drosophila
-
Hsu H.J., Drummond-Barbosa D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci USA 2009, 106:1117-1121.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 1117-1121
-
-
Hsu, H.J.1
Drummond-Barbosa, D.2
-
62
-
-
37849019064
-
Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila
-
Hsu H.J., LaFever L., Drummond-Barbosa D. Diet controls normal and tumorous germline stem cells via insulin-dependent and -independent mechanisms in Drosophila. Dev Biol 2008, 313:700-712.
-
(2008)
Dev Biol
, vol.313
, pp. 700-712
-
-
Hsu, H.J.1
LaFever, L.2
Drummond-Barbosa, D.3
-
63
-
-
67650266694
-
Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila
-
Ueishi S., Shimizu H., Inoue Y.H. Male germline stem cell division and spermatocyte growth require insulin signaling in Drosophila. Cell Struct Funct 2009, 34:61-69.
-
(2009)
Cell Struct Funct
, vol.34
, pp. 61-69
-
-
Ueishi, S.1
Shimizu, H.2
Inoue, Y.H.3
-
64
-
-
76449089286
-
Insulin signaling promotes germline proliferation in C. elegans
-
Michaelson D., Korta D.Z., Capua Y., Hubbard E.J. Insulin signaling promotes germline proliferation in C. elegans. Development 2010, 137:671-680.
-
(2010)
Development
, vol.137
, pp. 671-680
-
-
Michaelson, D.1
Korta, D.Z.2
Capua, Y.3
Hubbard, E.J.4
-
65
-
-
34848836428
-
Decline in Self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis
-
Boyle M., Wong C., Rocha M., Jones D.L. Decline in Self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 2007, 1:470-478.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 470-478
-
-
Boyle, M.1
Wong, C.2
Rocha, M.3
Jones, D.L.4
-
66
-
-
34848891273
-
Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary
-
Pan L., Chen S., Weng C., Call G., Zhu D., Tang H., Zhang N., Xie T. Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 2007, 1:458-469.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 458-469
-
-
Pan, L.1
Chen, S.2
Weng, C.3
Call, G.4
Zhu, D.5
Tang, H.6
Zhang, N.7
Xie, T.8
-
67
-
-
33746274318
-
Dynamics of the male germline stem cell population during aging of Drosophila melanogaster
-
Wallenfang M.R., Nayak R., DiNardo S. Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 2006, 5:297-304.
-
(2006)
Aging Cell
, vol.5
, pp. 297-304
-
-
Wallenfang, M.R.1
Nayak, R.2
DiNardo, S.3
-
68
-
-
73949123867
-
Some highlights of research on aging with invertebrates, 2009
-
Partridge L. Some highlights of research on aging with invertebrates, 2009. Aging Cell 2009, 8:509-513.
-
(2009)
Aging Cell
, vol.8
, pp. 509-513
-
-
Partridge, L.1
-
69
-
-
30344476433
-
Aging of male germ line stem cells in mice
-
Zhang X., Ebata K.T., Robaire B., Nagano M.C. Aging of male germ line stem cells in mice. Biol Reprod 2006, 74:119-124.
-
(2006)
Biol Reprod
, vol.74
, pp. 119-124
-
-
Zhang, X.1
Ebata, K.T.2
Robaire, B.3
Nagano, M.C.4
|