메뉴 건너뛰기




Volumn 224, Issue 11, 2010, Pages 1645-1653

Optimum surface roughness prediction in face milling X20Cr13 using particle swarm optimization algorithm

Author keywords

artificial neural network; cutting parameters; face milling; particle swarm optimization; surface roughness

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CUTTING PARAMETERS; EXPERIMENTAL DATA; EXPERIMENTAL MEASUREMENTS; FACE MILLING; MACHINE SETTINGS; NEURAL NETWORK SYSTEMS; OPTIMAL CUTTING PARAMETERS; OPTIMIZATION PROBLEMS; OPTIMIZATION SYSTEM; PARTICLE SWARM; PARTICLE SWARM OPTIMIZATION ALGORITHM; PREDICTIVE MODELS;

EID: 78649486645     PISSN: 09544054     EISSN: None     Source Type: Journal    
DOI: 10.1243/09544054JEM1809     Document Type: Article
Times cited : (31)

References (35)
  • 2
    • 0242269838 scopus 로고    scopus 로고
    • Tool condition monitoring in milling based on cutting forces by a neural network
    • Saglam, H. and Unuvar, A. Tool condition monitoring in milling based on cutting forces by a neural network. Int. J. Prod. Res., 2003, 41, 1519-1532.
    • (2003) Int. J. Prod. Res. , vol.41 , pp. 1519-1532
    • Saglam, H.1    Unuvar, A.2
  • 3
    • 7444238325 scopus 로고    scopus 로고
    • Taguchi method for design optimization of milled surface roughness
    • Bouzid, W., Zghal, A., and Sai, L. Taguchi method for design optimization of milled surface roughness. J. Mater. Process. Technol., 2004, 19(3), 159-162.
    • (2004) J. Mater. Process. Technol. , vol.19 , Issue.3 , pp. 159-162
    • Bouzid, W.1    Zghal, A.2    Sai, L.3
  • 4
    • 70449707983 scopus 로고    scopus 로고
    • Neural network prediction of surface roughness in milling of AISI 1040 steel
    • Topal, E. S., Sinanoglu, C., Gercekcioglu, E., and Yildizli, K. Neural network prediction of surface roughness in milling of AISI 1040 steel. J. Balkan Trib. Assoc., 2007, 13, 18-23.
    • (2007) J. Balkan Trib. Assoc. , vol.13 , pp. 18-23
    • Topal, E.S.1    Sinanoglu, C.2    Gercekcioglu, E.3    Yildizli, K.4
  • 6
    • 49349084486 scopus 로고    scopus 로고
    • Modelling and predicting surface roughness in turning operations using hybrid differential evolution and the group method of data handling networks
    • DOI: 10.1243/09544054JEM1079
    • Onwubolu, G. C. Modelling and predicting surface roughness in turning operations using hybrid differential evolution and the group method of data handling networks. Proc. IMechE, Part B: J. Engineering Manufacture, 2008, 222(7), 785-795 DOI: 10.1243/09544054JEM1079.
    • (2008) Proc. IMechE, Part B: J. Engineering Manufacture , vol.222 , Issue.7 , pp. 785-795
    • Onwubolu, G.C.1
  • 7
    • 0036815452 scopus 로고    scopus 로고
    • Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments
    • Benardos, P. G. and Vosniakos, G. C. Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments. Robot. Comput. - Integr. Mfg, 2002, 18, 343-354.
    • (2002) Robot. Comput. - Integr. Mfg , vol.18 , pp. 343-354
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 8
    • 27344460096 scopus 로고    scopus 로고
    • Application of response surface methodology in the optimization of cutting conditions for surface roughness
    • Oktema, H., Erzurumlu, T., and Kurtaran, H. Application of response surface methodology in the optimization of cutting conditions for surface roughness. J. Mater. Process. Technol., 2005, 170, 11-16.
    • (2005) J. Mater. Process. Technol. , vol.170 , pp. 11-16
    • Oktema, H.1    Erzurumlu, T.2    Kurtaran, H.3
  • 9
    • 20644440398 scopus 로고    scopus 로고
    • Assessment of sculptured surface milling strategies using design of experiments
    • Krimpenis, A. and Fousekis, A. Assessment of sculptured surface milling strategies using design of experiments. Int. J. Adv. Mfg Technol., 2005, 25, 444-453.
    • (2005) Int. J. Adv. Mfg Technol. , vol.25 , pp. 444-453
    • Krimpenis, A.1    Fousekis, A.2
  • 10
    • 33947176173 scopus 로고    scopus 로고
    • An improved cutting force and surface topography prediction model in end milling
    • Omar, O. E. E. K., El-Wardany, T., Ng, E., and Elbestawi, M. A. An improved cutting force and surface topography prediction model in end milling. Mach. Tools Mf. J., 2007, 47, 1263-1275.
    • (2007) Mach. Tools Mf. J. , vol.47 , pp. 1263-1275
    • Omar, O.E.E.K.1    El-Wardany, T.2    Ng, E.3    Elbestawi, M.A.4
  • 12
    • 67650705476 scopus 로고    scopus 로고
    • Optimum damage and surface roughness prediction in end milling glass fiber-reinforced plastics, using neural network and genetic algorithm
    • DOI: 10.1243/09544054JEM1409
    • Razfar, M. R. and Zanjani Zadeh, M. R. Optimum damage and surface roughness prediction in end milling glass fiber-reinforced plastics, using neural network and genetic algorithm. Proc. IMechE, Part B: J. Engineering Manufacture, 2009, 223, 653-664 DOI: 10.1243/09544054JEM1409.
    • (2009) Proc. IMechE, Part B: J. Engineering Manufacture , vol.223 , pp. 653-664
    • Razfar, M.R.1    Zanjani Zadeh, M.R.2
  • 13
    • 33646773258 scopus 로고    scopus 로고
    • Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
    • Oktem, H., Erzurumlu, T., and Erzincanli, F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater. Des., 2006, 27, 735-744.
    • (2006) Mater. Des. , vol.27 , pp. 735-744
    • Oktem, H.1    Erzurumlu, T.2    Erzincanli, F.3
  • 14
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • Yu, J., Wang, S., and Xi, L. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing, 2008, 71, 1054-1060.
    • (2008) Neurocomputing , vol.71 , pp. 1054-1060
    • Yu, J.1    Wang, S.2    Xi, L.3
  • 15
    • 3142768423 scopus 로고    scopus 로고
    • Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • Ratnaweera, A., Saman, K., and Watson, H. C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 2004, 8(3), 240-255.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Saman, K.2    Watson, H.C.3
  • 16
    • 43049114215 scopus 로고    scopus 로고
    • Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches
    • Coelho, L. S. and Lee, C.-S. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. Int. J. Elec. Power Energy Syst., 2008, 30(5), 297-307.
    • (2008) Int. J. Elec. Power Energy Syst. , vol.30 , Issue.5 , pp. 297-307
    • Coelho, L.S.1    Lee, C.-S.2
  • 17
    • 44949127284 scopus 로고    scopus 로고
    • Multi-strategy ensemble particle swarm optimization for dynamic optimization
    • Weilin, D. and Bin, L. Multi-strategy ensemble particle swarm optimization for dynamic optimization, Inform. Sci., 2008, 178(15), 3096-3109.
    • (2008) Inform. Sci. , vol.178 , Issue.15 , pp. 3096-3109
    • Weilin, D.1    Bin, L.2
  • 18
    • 67449142844 scopus 로고    scopus 로고
    • Operation sequencing optimization for five-axis prismatic parts using a particle swarm optimization approach
    • DOI: 10.1243/09544054JEM1224
    • Guo, Y. W., Mileham, A. R., Owen, G. W., Maropoulos, P. G., and Li, W. D. Operation sequencing optimization for five-axis prismatic parts using a particle swarm optimization approach. Proc. IMechE, Part B: J. Engineering Manufacture, 2009, 223, 485-497 DOI: 10.1243/09544054JEM1224.
    • (2009) Proc. IMechE, Part B: J. Engineering Manufacture , vol.223 , pp. 485-497
    • Guo, Y.W.1    Mileham, A.R.2    Owen, G.W.3    Maropoulos, P.G.4    Li, W.D.5
  • 19
    • 34147105043 scopus 로고    scopus 로고
    • Application of a PSO-based neural network in analysis of outcomes of construction claims
    • Chau, K. W. Application of a PSO-based neural network in analysis of outcomes of construction claims. Autom. Constr., 2007, 16, 642-646.
    • (2007) Autom. Constr. , vol.16 , pp. 642-646
    • Chau, K.W.1
  • 20
    • 0031354087 scopus 로고    scopus 로고
    • Using the particle swarm optimization technique to train a recurrent neural model
    • 4-7 November, Newport Beach, California, USA IEEEPress, Piscataway, NJ
    • Salerno, J. Using the particle swarm optimization technique to train a recurrent neural model. In Proceedings of the Ninth International Conference on Tools with artificial intelligence, 4-7 November 1997, pp. 45-49, Newport Beach, California, USA (IEEEPress, Piscataway, NJ).
    • (1997) Proceedings of the Ninth International Conference on Tools with Artificial Intelligence , pp. 45-49
    • Salerno, J.1
  • 21
    • 1842535329 scopus 로고    scopus 로고
    • A hybrid genetic algorithm and particle swarm optimization for recurrent network design
    • Juang, C. F. A hybrid genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern., 2004, 34, 997-1006.
    • (2004) IEEE Trans. Syst. Man. Cybern. , vol.34 , pp. 997-1006
    • Juang, C.F.1
  • 22
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau, K. W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol., 2006, 329 (3-4), 363-367.
    • (2006) J. Hydrol. , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 23
    • 35248838920 scopus 로고    scopus 로고
    • Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization
    • Guerra, F. A. and Coelho, L. S. Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos, Solitons Fractals, 2008, 35(5), 967-979.
    • (2008) Chaos, Solitons Fractals , vol.35 , Issue.5 , pp. 967-979
    • Guerra, F.A.1    Coelho, L.S.2
  • 24
    • 33847379879 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
    • Zhang, J.-R., Zhang, J., Lok, T.-M., and Lyu, M. R. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl. Math. Comput., 2007, 185, 1026-1037.
    • (2007) Appl. Math. Comput. , vol.185 , pp. 1026-1037
    • Zhang, J.-R.1    Zhang, J.2    Lok, T.-M.3    Lyu, M.R.4
  • 25
    • 58649098773 scopus 로고    scopus 로고
    • Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material
    • Chang, Q.-L., Zhou, H.-Q., and Hou, C.-J. Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material. J. China Univ. Mining Technol., 2008, 18, 551-555.
    • (2008) J. China Univ. Mining Technol. , vol.18 , pp. 551-555
    • Chang, Q.-L.1    Zhou, H.-Q.2    Hou, C.-J.3
  • 26
    • 71749096569 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks by multidimensional particle swarm optimization
    • Kiranyaz, V., Ince, T., Yildirim, A., and Gabbouj, M. Evolutionary artificial neural networks by multidimensional particle swarm optimization. Neural Netw., 2009, 22, 1448-1462.
    • (2009) Neural. Netw. , vol.22 , pp. 1448-1462
    • Kiranyaz, V.1    Ince, T.2    Yildirim, A.3    Gabbouj, M.4
  • 29
    • 3142768423 scopus 로고    scopus 로고
    • Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
    • Ratnaweera, A., Saman, K., and Watson, H. C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 2004, 8(3), 240-255.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 240-255
    • Ratnaweera, A.1    Saman, K.2    Watson, H.C.3
  • 30
    • 58749095103 scopus 로고    scopus 로고
    • An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications
    • Coelho, L. S. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications, Reliab. Engng Syst. Saf., 2009, 94(4), 830-837.
    • (2009) Reliab. Engng Syst. Saf. , vol.94 , Issue.4 , pp. 830-837
    • Coelho, L.S.1
  • 31
    • 35248862588 scopus 로고    scopus 로고
    • An improved particle swarm optimization algorithm
    • DOI 10.1016/j.amc.2007.03.047, PII S009630030700392X
    • Jiang, Y., Hu, T., Huang, C. C., and Wu, X. An improved particle swarm optimization algorithm. Appl. Math. Comput., 2007, 193(1), 231-239. (Pubitemid 47562556)
    • (2007) Applied Mathematics and Computation , vol.193 , Issue.1 , pp. 231-239
    • Jiang, Y.1    Hu, T.2    Huang, C.3    Wu, X.4
  • 32
    • 12144252495 scopus 로고    scopus 로고
    • An improved PSO-based ANN with simulated annealing technique
    • Yi, D. and Ge, X. An improved PSO-based ANN with simulated annealing technique, Neurocomputing, 2005, 63, 527-533.
    • (2005) Neurocomputing , vol.63 , pp. 527-533
    • Yi, D.1    Ge, X.2
  • 33
    • 34250686634 scopus 로고    scopus 로고
    • An improved particle swarm optimization algorithm combined with piecewise linear chaotic map
    • Xiang, T., Liao, X., and Wong, K.-W. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl. Math. Comput., 2007, 190, 1637-1645.
    • (2007) Appl. Math. Comput. , vol.190 , pp. 1637-1645
    • Xiang, T.1    Liao, X.2    Wong, K.-W.3
  • 34
    • 34247594331 scopus 로고    scopus 로고
    • Particle swarm and ant colony algorithms hybridized for improved continuous optimization
    • Shelokar, P. S., Siarry, P., Jayaraman, V. K., and Kulkarni, B. D. Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput., 2007, 188, 129-142.
    • (2007) Appl. Math. Comput. , vol.188 , pp. 129-142
    • Shelokar, P.S.1    Siarry, P.2    Jayaraman, V.K.3    Kulkarni, B.D.4
  • 35
    • 78649463898 scopus 로고    scopus 로고
    • SECO Milling, SECO Tools AB, Fagersta, Sweden
    • SECO Milling. Catalogue & technical guide, SECO Tools AB, Fagersta, Sweden, 2007.
    • (2007) Catalogue & Technical Guide


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.