-
2
-
-
0242269838
-
Tool condition monitoring in milling based on cutting forces by a neural network
-
Saglam, H. and Unuvar, A. Tool condition monitoring in milling based on cutting forces by a neural network. Int. J. Prod. Res., 2003, 41, 1519-1532.
-
(2003)
Int. J. Prod. Res.
, vol.41
, pp. 1519-1532
-
-
Saglam, H.1
Unuvar, A.2
-
3
-
-
7444238325
-
Taguchi method for design optimization of milled surface roughness
-
Bouzid, W., Zghal, A., and Sai, L. Taguchi method for design optimization of milled surface roughness. J. Mater. Process. Technol., 2004, 19(3), 159-162.
-
(2004)
J. Mater. Process. Technol.
, vol.19
, Issue.3
, pp. 159-162
-
-
Bouzid, W.1
Zghal, A.2
Sai, L.3
-
4
-
-
70449707983
-
Neural network prediction of surface roughness in milling of AISI 1040 steel
-
Topal, E. S., Sinanoglu, C., Gercekcioglu, E., and Yildizli, K. Neural network prediction of surface roughness in milling of AISI 1040 steel. J. Balkan Trib. Assoc., 2007, 13, 18-23.
-
(2007)
J. Balkan Trib. Assoc.
, vol.13
, pp. 18-23
-
-
Topal, E.S.1
Sinanoglu, C.2
Gercekcioglu, E.3
Yildizli, K.4
-
5
-
-
45749105080
-
Surface roughness prediction model for CNC machining of polypropylene
-
DOI: 10.1243/09544054JEM884
-
Dhokia, V. G., Kumar, S., Vichare, P., Newman, S. T., and Allen, R. D. Surface roughness prediction model for CNC machining of polypropylene. Proc. IMechE, Part B: J. Engineering Manufacture, 2008, 222, 137-157 DOI: 10.1243/09544054JEM884.
-
(2008)
Proc. IMechE, Part B: J. Engineering Manufacture
, vol.222
, pp. 137-157
-
-
Dhokia, V.G.1
Kumar, S.2
Vichare, P.3
Newman, S.T.4
Allen, R.D.5
-
6
-
-
49349084486
-
Modelling and predicting surface roughness in turning operations using hybrid differential evolution and the group method of data handling networks
-
DOI: 10.1243/09544054JEM1079
-
Onwubolu, G. C. Modelling and predicting surface roughness in turning operations using hybrid differential evolution and the group method of data handling networks. Proc. IMechE, Part B: J. Engineering Manufacture, 2008, 222(7), 785-795 DOI: 10.1243/09544054JEM1079.
-
(2008)
Proc. IMechE, Part B: J. Engineering Manufacture
, vol.222
, Issue.7
, pp. 785-795
-
-
Onwubolu, G.C.1
-
7
-
-
0036815452
-
Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments
-
Benardos, P. G. and Vosniakos, G. C. Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments. Robot. Comput. - Integr. Mfg, 2002, 18, 343-354.
-
(2002)
Robot. Comput. - Integr. Mfg
, vol.18
, pp. 343-354
-
-
Benardos, P.G.1
Vosniakos, G.C.2
-
8
-
-
27344460096
-
Application of response surface methodology in the optimization of cutting conditions for surface roughness
-
Oktema, H., Erzurumlu, T., and Kurtaran, H. Application of response surface methodology in the optimization of cutting conditions for surface roughness. J. Mater. Process. Technol., 2005, 170, 11-16.
-
(2005)
J. Mater. Process. Technol.
, vol.170
, pp. 11-16
-
-
Oktema, H.1
Erzurumlu, T.2
Kurtaran, H.3
-
9
-
-
20644440398
-
Assessment of sculptured surface milling strategies using design of experiments
-
Krimpenis, A. and Fousekis, A. Assessment of sculptured surface milling strategies using design of experiments. Int. J. Adv. Mfg Technol., 2005, 25, 444-453.
-
(2005)
Int. J. Adv. Mfg Technol.
, vol.25
, pp. 444-453
-
-
Krimpenis, A.1
Fousekis, A.2
-
10
-
-
33947176173
-
An improved cutting force and surface topography prediction model in end milling
-
Omar, O. E. E. K., El-Wardany, T., Ng, E., and Elbestawi, M. A. An improved cutting force and surface topography prediction model in end milling. Mach. Tools Mf. J., 2007, 47, 1263-1275.
-
(2007)
Mach. Tools Mf. J.
, vol.47
, pp. 1263-1275
-
-
Omar, O.E.E.K.1
El-Wardany, T.2
Ng, E.3
Elbestawi, M.A.4
-
11
-
-
27144494234
-
Selection of optimal cutting conditions by using GONNS
-
Tansela, I. N., Ozcelikb, B., Baoa, W. Y., Chena, P., Rincona, D., Yanga, S. Y., and Yenilmezc, A. Selection of optimal cutting conditions by using GONNS. Mach. Tools Mf. J., 2006, 46, 26-35.
-
(2006)
Mach. Tools Mf. J.
, vol.46
, pp. 26-35
-
-
Tansela, I.N.1
Ozcelikb, B.2
Baoa, W.Y.3
Chena, P.4
Rincona, D.5
Yanga, S.Y.6
Yenilmezc, A.7
-
12
-
-
67650705476
-
Optimum damage and surface roughness prediction in end milling glass fiber-reinforced plastics, using neural network and genetic algorithm
-
DOI: 10.1243/09544054JEM1409
-
Razfar, M. R. and Zanjani Zadeh, M. R. Optimum damage and surface roughness prediction in end milling glass fiber-reinforced plastics, using neural network and genetic algorithm. Proc. IMechE, Part B: J. Engineering Manufacture, 2009, 223, 653-664 DOI: 10.1243/09544054JEM1409.
-
(2009)
Proc. IMechE, Part B: J. Engineering Manufacture
, vol.223
, pp. 653-664
-
-
Razfar, M.R.1
Zanjani Zadeh, M.R.2
-
13
-
-
33646773258
-
Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
-
Oktem, H., Erzurumlu, T., and Erzincanli, F. Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. Mater. Des., 2006, 27, 735-744.
-
(2006)
Mater. Des.
, vol.27
, pp. 735-744
-
-
Oktem, H.1
Erzurumlu, T.2
Erzincanli, F.3
-
14
-
-
38649118854
-
Evolving artificial neural networks using an improved PSO and DPSO
-
Yu, J., Wang, S., and Xi, L. Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing, 2008, 71, 1054-1060.
-
(2008)
Neurocomputing
, vol.71
, pp. 1054-1060
-
-
Yu, J.1
Wang, S.2
Xi, L.3
-
15
-
-
3142768423
-
Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
-
Ratnaweera, A., Saman, K., and Watson, H. C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 2004, 8(3), 240-255.
-
(2004)
IEEE Trans. Evol. Comput.
, vol.8
, Issue.3
, pp. 240-255
-
-
Ratnaweera, A.1
Saman, K.2
Watson, H.C.3
-
16
-
-
43049114215
-
Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches
-
Coelho, L. S. and Lee, C.-S. Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. Int. J. Elec. Power Energy Syst., 2008, 30(5), 297-307.
-
(2008)
Int. J. Elec. Power Energy Syst.
, vol.30
, Issue.5
, pp. 297-307
-
-
Coelho, L.S.1
Lee, C.-S.2
-
17
-
-
44949127284
-
Multi-strategy ensemble particle swarm optimization for dynamic optimization
-
Weilin, D. and Bin, L. Multi-strategy ensemble particle swarm optimization for dynamic optimization, Inform. Sci., 2008, 178(15), 3096-3109.
-
(2008)
Inform. Sci.
, vol.178
, Issue.15
, pp. 3096-3109
-
-
Weilin, D.1
Bin, L.2
-
18
-
-
67449142844
-
Operation sequencing optimization for five-axis prismatic parts using a particle swarm optimization approach
-
DOI: 10.1243/09544054JEM1224
-
Guo, Y. W., Mileham, A. R., Owen, G. W., Maropoulos, P. G., and Li, W. D. Operation sequencing optimization for five-axis prismatic parts using a particle swarm optimization approach. Proc. IMechE, Part B: J. Engineering Manufacture, 2009, 223, 485-497 DOI: 10.1243/09544054JEM1224.
-
(2009)
Proc. IMechE, Part B: J. Engineering Manufacture
, vol.223
, pp. 485-497
-
-
Guo, Y.W.1
Mileham, A.R.2
Owen, G.W.3
Maropoulos, P.G.4
Li, W.D.5
-
19
-
-
34147105043
-
Application of a PSO-based neural network in analysis of outcomes of construction claims
-
Chau, K. W. Application of a PSO-based neural network in analysis of outcomes of construction claims. Autom. Constr., 2007, 16, 642-646.
-
(2007)
Autom. Constr.
, vol.16
, pp. 642-646
-
-
Chau, K.W.1
-
20
-
-
0031354087
-
Using the particle swarm optimization technique to train a recurrent neural model
-
4-7 November, Newport Beach, California, USA IEEEPress, Piscataway, NJ
-
Salerno, J. Using the particle swarm optimization technique to train a recurrent neural model. In Proceedings of the Ninth International Conference on Tools with artificial intelligence, 4-7 November 1997, pp. 45-49, Newport Beach, California, USA (IEEEPress, Piscataway, NJ).
-
(1997)
Proceedings of the Ninth International Conference on Tools with Artificial Intelligence
, pp. 45-49
-
-
Salerno, J.1
-
21
-
-
1842535329
-
A hybrid genetic algorithm and particle swarm optimization for recurrent network design
-
Juang, C. F. A hybrid genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern., 2004, 34, 997-1006.
-
(2004)
IEEE Trans. Syst. Man. Cybern.
, vol.34
, pp. 997-1006
-
-
Juang, C.F.1
-
22
-
-
33748929857
-
Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
-
Chau, K. W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. J. Hydrol., 2006, 329 (3-4), 363-367.
-
(2006)
J. Hydrol.
, vol.329
, Issue.3-4
, pp. 363-367
-
-
Chau, K.W.1
-
23
-
-
35248838920
-
Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization
-
Guerra, F. A. and Coelho, L. S. Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization. Chaos, Solitons Fractals, 2008, 35(5), 967-979.
-
(2008)
Chaos, Solitons Fractals
, vol.35
, Issue.5
, pp. 967-979
-
-
Guerra, F.A.1
Coelho, L.S.2
-
24
-
-
33847379879
-
A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
-
Zhang, J.-R., Zhang, J., Lok, T.-M., and Lyu, M. R. A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training. Appl. Math. Comput., 2007, 185, 1026-1037.
-
(2007)
Appl. Math. Comput.
, vol.185
, pp. 1026-1037
-
-
Zhang, J.-R.1
Zhang, J.2
Lok, T.-M.3
Lyu, M.R.4
-
25
-
-
58649098773
-
Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material
-
Chang, Q.-L., Zhou, H.-Q., and Hou, C.-J. Using particle swarm optimization algorithm in an artificial neural network to forecast the strength of paste filling material. J. China Univ. Mining Technol., 2008, 18, 551-555.
-
(2008)
J. China Univ. Mining Technol.
, vol.18
, pp. 551-555
-
-
Chang, Q.-L.1
Zhou, H.-Q.2
Hou, C.-J.3
-
26
-
-
71749096569
-
Evolutionary artificial neural networks by multidimensional particle swarm optimization
-
Kiranyaz, V., Ince, T., Yildirim, A., and Gabbouj, M. Evolutionary artificial neural networks by multidimensional particle swarm optimization. Neural Netw., 2009, 22, 1448-1462.
-
(2009)
Neural. Netw.
, vol.22
, pp. 1448-1462
-
-
Kiranyaz, V.1
Ince, T.2
Yildirim, A.3
Gabbouj, M.4
-
27
-
-
0029517385
-
A new optimizer using particle swarm theory
-
4-6 October, Nagoya, Japan IEEE Press, Piscataway
-
Eberhart, R. C. and Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micromachine and human science, 4-6 October 1995, pp. 39-43, Nagoya, Japan (IEEE Press, Piscataway).
-
(1995)
Proceedings of the Sixth International Symposium on Micromachine and Human Science
, pp. 39-43
-
-
Eberhart, R.C.1
Kennedy, J.2
-
28
-
-
0029535737
-
Particle swarm optimization
-
Perth, Western Australia IEEE Press, Piscataway, NJ
-
Kennedy, J. and Eberhart, R. C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural networks, 1995, pp. 1942-1948, Perth, Western Australia (IEEE Press, Piscataway, NJ).
-
(1995)
Proceedings of the IEEE International Conference on Neural. Networks
, pp. 1942-1948
-
-
Kennedy, J.1
Eberhart, R.C.2
-
29
-
-
3142768423
-
Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
-
Ratnaweera, A., Saman, K., and Watson, H. C. Selforganizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol. Comput., 2004, 8(3), 240-255.
-
(2004)
IEEE Trans. Evol. Comput.
, vol.8
, Issue.3
, pp. 240-255
-
-
Ratnaweera, A.1
Saman, K.2
Watson, H.C.3
-
30
-
-
58749095103
-
An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications
-
Coelho, L. S. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications, Reliab. Engng Syst. Saf., 2009, 94(4), 830-837.
-
(2009)
Reliab. Engng Syst. Saf.
, vol.94
, Issue.4
, pp. 830-837
-
-
Coelho, L.S.1
-
31
-
-
35248862588
-
An improved particle swarm optimization algorithm
-
DOI 10.1016/j.amc.2007.03.047, PII S009630030700392X
-
Jiang, Y., Hu, T., Huang, C. C., and Wu, X. An improved particle swarm optimization algorithm. Appl. Math. Comput., 2007, 193(1), 231-239. (Pubitemid 47562556)
-
(2007)
Applied Mathematics and Computation
, vol.193
, Issue.1
, pp. 231-239
-
-
Jiang, Y.1
Hu, T.2
Huang, C.3
Wu, X.4
-
32
-
-
12144252495
-
An improved PSO-based ANN with simulated annealing technique
-
Yi, D. and Ge, X. An improved PSO-based ANN with simulated annealing technique, Neurocomputing, 2005, 63, 527-533.
-
(2005)
Neurocomputing
, vol.63
, pp. 527-533
-
-
Yi, D.1
Ge, X.2
-
33
-
-
34250686634
-
An improved particle swarm optimization algorithm combined with piecewise linear chaotic map
-
Xiang, T., Liao, X., and Wong, K.-W. An improved particle swarm optimization algorithm combined with piecewise linear chaotic map. Appl. Math. Comput., 2007, 190, 1637-1645.
-
(2007)
Appl. Math. Comput.
, vol.190
, pp. 1637-1645
-
-
Xiang, T.1
Liao, X.2
Wong, K.-W.3
-
34
-
-
34247594331
-
Particle swarm and ant colony algorithms hybridized for improved continuous optimization
-
Shelokar, P. S., Siarry, P., Jayaraman, V. K., and Kulkarni, B. D. Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput., 2007, 188, 129-142.
-
(2007)
Appl. Math. Comput.
, vol.188
, pp. 129-142
-
-
Shelokar, P.S.1
Siarry, P.2
Jayaraman, V.K.3
Kulkarni, B.D.4
-
35
-
-
78649463898
-
-
SECO Milling, SECO Tools AB, Fagersta, Sweden
-
SECO Milling. Catalogue & technical guide, SECO Tools AB, Fagersta, Sweden, 2007.
-
(2007)
Catalogue & Technical Guide
-
-
|