메뉴 건너뛰기




Volumn 74, Issue 1-3, 2010, Pages 457-460

Approximation capability of interpolation neural networks

Author keywords

Best approximation; Interpolation; Neural networks

Indexed keywords

APPROXIMATION CAPABILITIES; APPROXIMATION EFFECTS; BEST APPROXIMATIONS; FUNCTIONAL APPROACH; HIDDEN LAYERS; HIDDEN NEURONS; HIDDEN NODES; INPUT NEURONS; INTEGRABLE FUNCTIONS; TARGET FUNCTIONS;

EID: 78649483125     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.08.018     Document Type: Article
Times cited : (23)

References (24)
  • 1
    • 55549145460 scopus 로고    scopus 로고
    • Interpolation and rates of convergence for a class of neural networks
    • Cao F.L., Zhang Y.Q., He Z.R. Interpolation and rates of convergence for a class of neural networks. Appl. Math. Model 2009, 33:1441-1456.
    • (2009) Appl. Math. Model , vol.33 , pp. 1441-1456
    • Cao, F.L.1    Zhang, Y.Q.2    He, Z.R.3
  • 2
    • 51249165422 scopus 로고
    • Degree of approximation by superpositions of a sigmoidal function
    • Chen D.B. Degree of approximation by superpositions of a sigmoidal function. Approx. Theory Appl. 1993, 9:17-28.
    • (1993) Approx. Theory Appl. , vol.9 , pp. 17-28
    • Chen, D.B.1
  • 3
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical system
    • Chen T.P., Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical system. IEEE Trans. Neural Network 1995, 6:911-917.
    • (1995) IEEE Trans. Neural Network , vol.6 , pp. 911-917
    • Chen, T.P.1    Chen, H.2
  • 4
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • Chui C.K., Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 1992, 70:131-141.
    • (1992) J. Approx. Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 5
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • Cybenko G. Approximation by superpositions of sigmoidal function. Math. Control Signals Syst. 1989, 2:303-314.
    • (1989) Math. Control Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mapping by neural networks
    • Funahashi K.I. On the approximate realization of continuous mapping by neural networks. Neural Networks 1989, 2:183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 8
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximation
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximation. Neural Networks 1989, 2:359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 9
    • 78649490884 scopus 로고    scopus 로고
    • General approximation theorem on feedforward networks, in: 1997 IEEE International Conference Neural Networks (ICNN97), Houston, TX,
    • G.B. Huang, H.A. Babri, General approximation theorem on feedforward networks, in: 1997 IEEE International Conference Neural Networks (ICNN97), Houston, TX, 1997.
    • (1997)
    • Huang, G.B.1    Babri, H.A.2
  • 10
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Network 1998, 9(1):224-229.
    • (1998) IEEE Trans. Neural Network , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.B.1    Babri, H.A.2
  • 11
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN04), Budapest, Hungary, July
    • G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN04), Budapest, Hungary, July 25-29, 2004.
    • (2004) , pp. 25-29
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 12
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 13
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 14
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G.B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.B.1    Chen, L.2
  • 15
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71:3460-3468.
    • (2008) Neurocomputing , vol.71 , pp. 3460-3468
    • Huang, G.B.1    Chen, L.2
  • 16
    • 0042162507 scopus 로고    scopus 로고
    • Independence of unscaled basis functions and finite mappings by neural networks
    • Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. Math. Sci. 2001, 26:117-126.
    • (2001) Math. Sci. , vol.26 , pp. 117-126
    • Ito, Y.1
  • 17
    • 0009625590 scopus 로고    scopus 로고
    • Superposition of linearly independent functions and finite mappings by neural networks
    • Ito Y., Saito K. Superposition of linearly independent functions and finite mappings by neural networks. Math. Sci. 1996, 21:27-33.
    • (1996) Math. Sci. , vol.21 , pp. 27-33
    • Ito, Y.1    Saito, K.2
  • 18
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximant any function
    • Leshno M., Lin V.Y., Pinks A., Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximant any function. Neural Networks 1993, 6:861-867.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinks, A.3    Schocken, S.4
  • 19
    • 28244460747 scopus 로고    scopus 로고
    • Constructive approximate interpolation by nerual networks
    • Llanas B., Sainz F.J. Constructive approximate interpolation by nerual networks. J. Comput. Appl. Math. 2006, 188:283-308.
    • (2006) J. Comput. Appl. Math. , vol.188 , pp. 283-308
    • Llanas, B.1    Sainz, F.J.2
  • 20
    • 34548124676 scopus 로고    scopus 로고
    • Hermite interpolation by neural networks
    • Llanas B., Lantarón S. Hermite interpolation by neural networks. Appl. Math. Comput. 2007, 191:429-439.
    • (2007) Appl. Math. Comput. , vol.191 , pp. 429-439
    • Llanas, B.1    Lantarón, S.2
  • 21
    • 14544277941 scopus 로고    scopus 로고
    • n: error estimates for radial basis and band-limited functions
    • n: error estimates for radial basis and band-limited functions. SIAM J. Math. Anal. 2004, 36:284-300.
    • (2004) SIAM J. Math. Anal. , vol.36 , pp. 284-300
    • Narcowich, F.J.1    Ward, J.D.2
  • 22
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 143-195.
    • (1999) Acta Numer. , pp. 143-195
    • Pinkus, A.1
  • 23
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • Sontag E.D. Feedforward nets for interpolation and classification. J. Comput. Syst. Sci. 1992, 45:20-48.
    • (1992) J. Comput. Syst. Sci. , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 24
    • 80053470591 scopus 로고    scopus 로고
    • The ridge function representation of polynomials and an application to neural networks, Acta Math. Sinica, English Series, in press, doi:.
    • T.F. Xie, F.L. Cao, The ridge function representation of polynomials and an application to neural networks, Acta Math. Sinica, English Series, in press, doi:. http://10.1007/s10114-011-9407-1.
    • Xie, T.F.1    Cao, F.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.