-
1
-
-
55549145460
-
Interpolation and rates of convergence for a class of neural networks
-
Cao F.L., Zhang Y.Q., He Z.R. Interpolation and rates of convergence for a class of neural networks. Appl. Math. Model 2009, 33:1441-1456.
-
(2009)
Appl. Math. Model
, vol.33
, pp. 1441-1456
-
-
Cao, F.L.1
Zhang, Y.Q.2
He, Z.R.3
-
2
-
-
51249165422
-
Degree of approximation by superpositions of a sigmoidal function
-
Chen D.B. Degree of approximation by superpositions of a sigmoidal function. Approx. Theory Appl. 1993, 9:17-28.
-
(1993)
Approx. Theory Appl.
, vol.9
, pp. 17-28
-
-
Chen, D.B.1
-
3
-
-
0029343809
-
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical system
-
Chen T.P., Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical system. IEEE Trans. Neural Network 1995, 6:911-917.
-
(1995)
IEEE Trans. Neural Network
, vol.6
, pp. 911-917
-
-
Chen, T.P.1
Chen, H.2
-
4
-
-
0000378922
-
Approximation by ridge functions and neural networks with one hidden layer
-
Chui C.K., Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 1992, 70:131-141.
-
(1992)
J. Approx. Theory
, vol.70
, pp. 131-141
-
-
Chui, C.K.1
Li, X.2
-
5
-
-
0024861871
-
Approximation by superpositions of sigmoidal function
-
Cybenko G. Approximation by superpositions of sigmoidal function. Math. Control Signals Syst. 1989, 2:303-314.
-
(1989)
Math. Control Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
6
-
-
0024866495
-
On the approximate realization of continuous mapping by neural networks
-
Funahashi K.I. On the approximate realization of continuous mapping by neural networks. Neural Networks 1989, 2:183-192.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.I.1
-
8
-
-
0024880831
-
Multilayer feedforward networks are universal approximation
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximation. Neural Networks 1989, 2:359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
9
-
-
78649490884
-
-
General approximation theorem on feedforward networks, in: 1997 IEEE International Conference Neural Networks (ICNN97), Houston, TX,
-
G.B. Huang, H.A. Babri, General approximation theorem on feedforward networks, in: 1997 IEEE International Conference Neural Networks (ICNN97), Houston, TX, 1997.
-
(1997)
-
-
Huang, G.B.1
Babri, H.A.2
-
10
-
-
0031673055
-
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
-
Huang G.B., Babri H.A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Network 1998, 9(1):224-229.
-
(1998)
IEEE Trans. Neural Network
, vol.9
, Issue.1
, pp. 224-229
-
-
Huang, G.B.1
Babri, H.A.2
-
11
-
-
10944272650
-
-
Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN04), Budapest, Hungary, July
-
G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN04), Budapest, Hungary, July 25-29, 2004.
-
(2004)
, pp. 25-29
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
12
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
13
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G.B., Chen L., Siew C.K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Networks 2006, 17(4):879-892.
-
(2006)
IEEE Trans. Neural Networks
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.B.1
Chen, L.2
Siew, C.K.3
-
14
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G.B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70:3056-3062.
-
(2007)
Neurocomputing
, vol.70
, pp. 3056-3062
-
-
Huang, G.B.1
Chen, L.2
-
15
-
-
56549090053
-
Enhanced random search based incremental extreme learning machine
-
Huang G.B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71:3460-3468.
-
(2008)
Neurocomputing
, vol.71
, pp. 3460-3468
-
-
Huang, G.B.1
Chen, L.2
-
16
-
-
0042162507
-
Independence of unscaled basis functions and finite mappings by neural networks
-
Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. Math. Sci. 2001, 26:117-126.
-
(2001)
Math. Sci.
, vol.26
, pp. 117-126
-
-
Ito, Y.1
-
17
-
-
0009625590
-
Superposition of linearly independent functions and finite mappings by neural networks
-
Ito Y., Saito K. Superposition of linearly independent functions and finite mappings by neural networks. Math. Sci. 1996, 21:27-33.
-
(1996)
Math. Sci.
, vol.21
, pp. 27-33
-
-
Ito, Y.1
Saito, K.2
-
18
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximant any function
-
Leshno M., Lin V.Y., Pinks A., Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximant any function. Neural Networks 1993, 6:861-867.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinks, A.3
Schocken, S.4
-
19
-
-
28244460747
-
Constructive approximate interpolation by nerual networks
-
Llanas B., Sainz F.J. Constructive approximate interpolation by nerual networks. J. Comput. Appl. Math. 2006, 188:283-308.
-
(2006)
J. Comput. Appl. Math.
, vol.188
, pp. 283-308
-
-
Llanas, B.1
Sainz, F.J.2
-
20
-
-
34548124676
-
Hermite interpolation by neural networks
-
Llanas B., Lantarón S. Hermite interpolation by neural networks. Appl. Math. Comput. 2007, 191:429-439.
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 429-439
-
-
Llanas, B.1
Lantarón, S.2
-
21
-
-
14544277941
-
n: error estimates for radial basis and band-limited functions
-
n: error estimates for radial basis and band-limited functions. SIAM J. Math. Anal. 2004, 36:284-300.
-
(2004)
SIAM J. Math. Anal.
, vol.36
, pp. 284-300
-
-
Narcowich, F.J.1
Ward, J.D.2
-
22
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. 1999, 143-195.
-
(1999)
Acta Numer.
, pp. 143-195
-
-
Pinkus, A.1
-
23
-
-
0026904597
-
Feedforward nets for interpolation and classification
-
Sontag E.D. Feedforward nets for interpolation and classification. J. Comput. Syst. Sci. 1992, 45:20-48.
-
(1992)
J. Comput. Syst. Sci.
, vol.45
, pp. 20-48
-
-
Sontag, E.D.1
-
24
-
-
80053470591
-
-
The ridge function representation of polynomials and an application to neural networks, Acta Math. Sinica, English Series, in press, doi:.
-
T.F. Xie, F.L. Cao, The ridge function representation of polynomials and an application to neural networks, Acta Math. Sinica, English Series, in press, doi:. http://10.1007/s10114-011-9407-1.
-
-
-
Xie, T.F.1
Cao, F.L.2
|