메뉴 건너뛰기




Volumn 33, Issue 3, 2009, Pages 1441-1456

Interpolation and rates of convergence for a class of neural networks

Author keywords

Approximation; Estimate of error; Interpolation; Neural networks

Indexed keywords

INTERPOLATION; NEURAL NETWORKS; PROBABILITY DENSITY FUNCTION;

EID: 55549145460     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2008.02.009     Document Type: Article
Times cited : (29)

References (27)
  • 1
    • 0024861871 scopus 로고
    • Approximation by superpositions of sigmoidal function
    • Cybenko G. Approximation by superpositions of sigmoidal function. Math. Contr. Signals Syst. 2 (1989) 303-314
    • (1989) Math. Contr. Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 2
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K.I. On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 3
    • 0000378922 scopus 로고
    • Approximation by ridge functions and neural networks with one hidden layer
    • Chui C.K., and Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70 (1992) 131-141
    • (1992) J. Approx. Theory , vol.70 , pp. 131-141
    • Chui, C.K.1    Li, X.2
  • 4
    • 0000358945 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • Mhaskar H.N., and Micchelli C.A. Approximation by superposition of a sigmoidal function. Adv. Appl. Math. 13 (1992) 350-373
    • (1992) Adv. Appl. Math. , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 5
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M., Lin V.Y., Pinks A., and Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6 (1993) 861-867
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinks, A.3    Schocken, S.4
  • 6
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to a dynamic system
    • Chen T.P., and Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to a dynamic system. IEEE Trans. Neural Networks 6 (1995) 911-917
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 911-917
    • Chen, T.P.1    Chen, H.2
  • 8
    • 0033428168 scopus 로고    scopus 로고
    • Approximation of functions and their derivatives: a neural network implementation with applications
    • Nguyen-Thien T., and Tran-Cong T. Approximation of functions and their derivatives: a neural network implementation with applications. Appl. Math. Modell. 23 (1999) 687-704
    • (1999) Appl. Math. Modell. , vol.23 , pp. 687-704
    • Nguyen-Thien, T.1    Tran-Cong, T.2
  • 9
    • 0037261148 scopus 로고    scopus 로고
    • Analysis of Tikhonov regularization for function approximation by neural networks
    • Martin B., and Andreas N. Analysis of Tikhonov regularization for function approximation by neural networks. Neural Networks 16 (2003) 79-90
    • (2003) Neural Networks , vol.16 , pp. 79-90
    • Martin, B.1    Andreas, N.2
  • 10
    • 0037368037 scopus 로고    scopus 로고
    • Approximation of function and its derivatives using radial basis function networks
    • Mai-Duy N., and Tran-Cong T. Approximation of function and its derivatives using radial basis function networks. Appl. Math. Modell. 27 (2003) 197-220
    • (2003) Appl. Math. Modell. , vol.27 , pp. 197-220
    • Mai-Duy, N.1    Tran-Cong, T.2
  • 11
    • 4143117111 scopus 로고    scopus 로고
    • When is approximation by Gaussian networks necessarily a linear process?
    • Mhaskar H.N. When is approximation by Gaussian networks necessarily a linear process?. Neural Networks 17 (2004) 989-1001
    • (2004) Neural Networks , vol.17 , pp. 989-1001
    • Mhaskar, H.N.1
  • 12
    • 24344496437 scopus 로고    scopus 로고
    • The essential order of approximation for neural networks
    • Xu Z.B., and Cao F.L. The essential order of approximation for neural networks. Sci. China (Series F) 47 (2004) 97-112
    • (2004) Sci. China (Series F) , vol.47 , pp. 97-112
    • Xu, Z.B.1    Cao, F.L.2
  • 13
    • 24344486886 scopus 로고    scopus 로고
    • p-approximation order for neural networks
    • p-approximation order for neural networks. Neural Networks 18 (2005) 914-923
    • (2005) Neural Networks , vol.18 , pp. 914-923
    • Xu, Z.B.1    Cao, F.L.2
  • 14
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • Ferrari S., and Stengel R.F. Smooth function approximation using neural networks. IEEE Trans. Neural Networks 16 (2005) 24-38
    • (2005) IEEE Trans. Neural Networks , vol.16 , pp. 24-38
    • Ferrari, S.1    Stengel, R.F.2
  • 15
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., and Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 70 (2006) 489-501
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 16
    • 30344432717 scopus 로고    scopus 로고
    • Approximation by neural networks and learning theory
    • Maiorov V. Approximation by neural networks and learning theory. J. Complex. 22 (2006) 102-117
    • (2006) J. Complex. , vol.22 , pp. 102-117
    • Maiorov, V.1
  • 17
    • 38649094938 scopus 로고    scopus 로고
    • The estimate for approximation error of neural networks: A constructive approach
    • Cao F.L., Xie T.F., and Xu Z.B. The estimate for approximation error of neural networks: A constructive approach. Neurocomputing 71 (2008) 626-630
    • (2008) Neurocomputing , vol.71 , pp. 626-630
    • Cao, F.L.1    Xie, T.F.2    Xu, Z.B.3
  • 18
    • 0042162507 scopus 로고    scopus 로고
    • Independence of unscaled basis functions and finite mappings by neural networks
    • Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. Math. Sci. 26 (2001) 117-126
    • (2001) Math. Sci. , vol.26 , pp. 117-126
    • Ito, Y.1
  • 19
    • 0009625590 scopus 로고    scopus 로고
    • Superposition of linearly independent functions and finite mappings by neural networks
    • Ito Y., and Saito K. Superposition of linearly independent functions and finite mappings by neural networks. Math. Sci. 21 (1996) 27-33
    • (1996) Math. Sci. , vol.21 , pp. 27-33
    • Ito, Y.1    Saito, K.2
  • 20
    • 85011438572 scopus 로고    scopus 로고
    • Approximation theory of the MLP model in neural networks
    • Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. (1999) 143-195
    • (1999) Acta Numer. , pp. 143-195
    • Pinkus, A.1
  • 21
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • Sontag E.D. Feedforward nets for interpolation and classification. J. Comp. Syst. Sci. 45 (1992) 20-48
    • (1992) J. Comp. Syst. Sci. , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 22
    • 28244460747 scopus 로고    scopus 로고
    • Constructive approximate interpolation by neural networks
    • Llanas B., and Sainz F.J. Constructive approximate interpolation by neural networks. J. Comput. Appl. Math. 188 (2006) 283-308
    • (2006) J. Comput. Appl. Math. , vol.188 , pp. 283-308
    • Llanas, B.1    Sainz, F.J.2
  • 27
    • 0025538692 scopus 로고    scopus 로고
    • Y. Shrivatava, S. Dasgupta, Neural networks for exact matching of functions on a discrete domain, in: Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, 1990, pp. 1719-1724.
    • Y. Shrivatava, S. Dasgupta, Neural networks for exact matching of functions on a discrete domain, in: Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, 1990, pp. 1719-1724.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.