-
1
-
-
0024861871
-
Approximation by superpositions of sigmoidal function
-
Cybenko G. Approximation by superpositions of sigmoidal function. Math. Contr. Signals Syst. 2 (1989) 303-314
-
(1989)
Math. Contr. Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
2
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi K.I. On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.I.1
-
3
-
-
0000378922
-
Approximation by ridge functions and neural networks with one hidden layer
-
Chui C.K., and Li X. Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70 (1992) 131-141
-
(1992)
J. Approx. Theory
, vol.70
, pp. 131-141
-
-
Chui, C.K.1
Li, X.2
-
4
-
-
0000358945
-
Approximation by superposition of a sigmoidal function
-
Mhaskar H.N., and Micchelli C.A. Approximation by superposition of a sigmoidal function. Adv. Appl. Math. 13 (1992) 350-373
-
(1992)
Adv. Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
5
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno M., Lin V.Y., Pinks A., and Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6 (1993) 861-867
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinks, A.3
Schocken, S.4
-
6
-
-
0029343809
-
Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to a dynamic system
-
Chen T.P., and Chen H. Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to a dynamic system. IEEE Trans. Neural Networks 6 (1995) 911-917
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 911-917
-
-
Chen, T.P.1
Chen, H.2
-
8
-
-
0033428168
-
Approximation of functions and their derivatives: a neural network implementation with applications
-
Nguyen-Thien T., and Tran-Cong T. Approximation of functions and their derivatives: a neural network implementation with applications. Appl. Math. Modell. 23 (1999) 687-704
-
(1999)
Appl. Math. Modell.
, vol.23
, pp. 687-704
-
-
Nguyen-Thien, T.1
Tran-Cong, T.2
-
9
-
-
0037261148
-
Analysis of Tikhonov regularization for function approximation by neural networks
-
Martin B., and Andreas N. Analysis of Tikhonov regularization for function approximation by neural networks. Neural Networks 16 (2003) 79-90
-
(2003)
Neural Networks
, vol.16
, pp. 79-90
-
-
Martin, B.1
Andreas, N.2
-
10
-
-
0037368037
-
Approximation of function and its derivatives using radial basis function networks
-
Mai-Duy N., and Tran-Cong T. Approximation of function and its derivatives using radial basis function networks. Appl. Math. Modell. 27 (2003) 197-220
-
(2003)
Appl. Math. Modell.
, vol.27
, pp. 197-220
-
-
Mai-Duy, N.1
Tran-Cong, T.2
-
11
-
-
4143117111
-
When is approximation by Gaussian networks necessarily a linear process?
-
Mhaskar H.N. When is approximation by Gaussian networks necessarily a linear process?. Neural Networks 17 (2004) 989-1001
-
(2004)
Neural Networks
, vol.17
, pp. 989-1001
-
-
Mhaskar, H.N.1
-
12
-
-
24344496437
-
The essential order of approximation for neural networks
-
Xu Z.B., and Cao F.L. The essential order of approximation for neural networks. Sci. China (Series F) 47 (2004) 97-112
-
(2004)
Sci. China (Series F)
, vol.47
, pp. 97-112
-
-
Xu, Z.B.1
Cao, F.L.2
-
13
-
-
24344486886
-
p-approximation order for neural networks
-
p-approximation order for neural networks. Neural Networks 18 (2005) 914-923
-
(2005)
Neural Networks
, vol.18
, pp. 914-923
-
-
Xu, Z.B.1
Cao, F.L.2
-
14
-
-
13844255524
-
Smooth function approximation using neural networks
-
Ferrari S., and Stengel R.F. Smooth function approximation using neural networks. IEEE Trans. Neural Networks 16 (2005) 24-38
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, pp. 24-38
-
-
Ferrari, S.1
Stengel, R.F.2
-
15
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., and Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 70 (2006) 489-501
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
16
-
-
30344432717
-
Approximation by neural networks and learning theory
-
Maiorov V. Approximation by neural networks and learning theory. J. Complex. 22 (2006) 102-117
-
(2006)
J. Complex.
, vol.22
, pp. 102-117
-
-
Maiorov, V.1
-
17
-
-
38649094938
-
The estimate for approximation error of neural networks: A constructive approach
-
Cao F.L., Xie T.F., and Xu Z.B. The estimate for approximation error of neural networks: A constructive approach. Neurocomputing 71 (2008) 626-630
-
(2008)
Neurocomputing
, vol.71
, pp. 626-630
-
-
Cao, F.L.1
Xie, T.F.2
Xu, Z.B.3
-
18
-
-
0042162507
-
Independence of unscaled basis functions and finite mappings by neural networks
-
Ito Y. Independence of unscaled basis functions and finite mappings by neural networks. Math. Sci. 26 (2001) 117-126
-
(2001)
Math. Sci.
, vol.26
, pp. 117-126
-
-
Ito, Y.1
-
19
-
-
0009625590
-
Superposition of linearly independent functions and finite mappings by neural networks
-
Ito Y., and Saito K. Superposition of linearly independent functions and finite mappings by neural networks. Math. Sci. 21 (1996) 27-33
-
(1996)
Math. Sci.
, vol.21
, pp. 27-33
-
-
Ito, Y.1
Saito, K.2
-
20
-
-
85011438572
-
Approximation theory of the MLP model in neural networks
-
Pinkus A. Approximation theory of the MLP model in neural networks. Acta Numer. (1999) 143-195
-
(1999)
Acta Numer.
, pp. 143-195
-
-
Pinkus, A.1
-
21
-
-
0026904597
-
Feedforward nets for interpolation and classification
-
Sontag E.D. Feedforward nets for interpolation and classification. J. Comp. Syst. Sci. 45 (1992) 20-48
-
(1992)
J. Comp. Syst. Sci.
, vol.45
, pp. 20-48
-
-
Sontag, E.D.1
-
22
-
-
28244460747
-
Constructive approximate interpolation by neural networks
-
Llanas B., and Sainz F.J. Constructive approximate interpolation by neural networks. J. Comput. Appl. Math. 188 (2006) 283-308
-
(2006)
J. Comput. Appl. Math.
, vol.188
, pp. 283-308
-
-
Llanas, B.1
Sainz, F.J.2
-
24
-
-
55549136164
-
-
Science Press, Beijing pp. 92-93, Reprint
-
Hritonenko N., and Yatsenko Y. Mathematical Modeling in Economics, Ecology and the Environment (2006), Science Press, Beijing pp. 92-93, Reprint
-
(2006)
Mathematical Modeling in Economics, Ecology and the Environment
-
-
Hritonenko, N.1
Yatsenko, Y.2
-
25
-
-
0003684449
-
-
Springer-Verlag, New York pp. 50-240
-
Hastie T., Tibshirani R., and Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (2001), Springer-Verlag, New York pp. 50-240
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
27
-
-
0025538692
-
-
Y. Shrivatava, S. Dasgupta, Neural networks for exact matching of functions on a discrete domain, in: Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, 1990, pp. 1719-1724.
-
Y. Shrivatava, S. Dasgupta, Neural networks for exact matching of functions on a discrete domain, in: Proceedings of the 29th IEEE Conference on Decision and Control, Honolulu, 1990, pp. 1719-1724.
-
-
-
|