메뉴 건너뛰기




Volumn 74, Issue 1-3, 2010, Pages 301-314

Sample-dependent graph construction with application to dimensionality reduction

Author keywords

Dimensionality reduction (DR); Graph construction; Graph embedding; Graph Laplacian; Local neighbor; Similarity neighborhood

Indexed keywords

DIMENSIONALITY REDUCTION; GRAPH CONSTRUCTION; GRAPH EMBEDDING; GRAPH LAPLACIAN; LOCAL NEIGHBOR; SIMILARITY NEIGHBORHOOD;

EID: 78649463393     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.03.019     Document Type: Article
Times cited : (58)

References (53)
  • 1
    • 78649477315 scopus 로고    scopus 로고
    • cality preserving projections, in: Advances in Neural Information Processing Systems
    • X. He, P. Niyogi, Locality preserving projections, in: Advances in Neural Information Processing Systems, 2003.
    • (2003)
    • He, X.1    Niyogi, P.2
  • 4
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 5
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., de Silva V., Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.3
  • 6
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 7
    • 84880899766 scopus 로고    scopus 로고
    • Locality sensitive discriminant analysis, in: International Joint Conference on Artificial Intelligence,
    • D. Cai, X. He, K. Zhou, J. Han, and H. Bao, Locality sensitive discriminant analysis, in: International Joint Conference on Artificial Intelligence, 2007.
    • (2007)
    • Cai, D.1    He, X.2    Zhou, K.3    Han, J.4    Bao, H.5
  • 8
    • 33947492041 scopus 로고    scopus 로고
    • Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics
    • Yang J., Zhang D., Yang J.Y., Niu B. Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29:650-664.
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell. , vol.29 , pp. 650-664
    • Yang, J.1    Zhang, D.2    Yang, J.Y.3    Niu, B.4
  • 9
    • 46149113956 scopus 로고    scopus 로고
    • Comments on globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics
    • Deng W., Hu J., Guo J., Zhang H., Zhang C. Comments on globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30:1503-1504.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , pp. 1503-1504
    • Deng, W.1    Hu, J.2    Guo, J.3    Zhang, H.4    Zhang, C.5
  • 10
    • 78649487090 scopus 로고    scopus 로고
    • Locally linear embedded eigenspace analysis, IFP-TR, UIUC, 〈〉, January 1,
    • Y. Fu, T.S. Huang, Locally linear embedded eigenspace analysis, IFP-TR, UIUC, 〈〉, January 1, 2005. http://www.ifp.uiuc.edu/~yunfu2/papers/LEAYun05.pdf.
    • (2005)
    • Fu, Y.1    Huang, T.S.2
  • 11
    • 49049111209 scopus 로고    scopus 로고
    • Semi-supervised discriminant analysis, in: IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, October
    • D. Cai, X. He, J. Han, Semi-supervised discriminant analysis, in: IEEE International Conference on Computer Vision, Rio de Janeiro, Brazil, October 2007.
    • (2007)
    • Cai, D.1    He, X.2    Han, J.3
  • 12
    • 33749248511 scopus 로고    scopus 로고
    • Semi-supervised nonlinear dimensionality reduction, in: International Conference on Machine Learning, Pittsburgh, PA,
    • X. Yang, H. Fu, H. Zha, J.L. Barlow, Semi-supervised nonlinear dimensionality reduction, in: International Conference on Machine Learning, Pittsburgh, PA, 2006.
    • (2006)
    • Yang, X.1    Fu, H.2    Zha, H.3    Barlow, J.L.4
  • 13
    • 78649459888 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison, July,
    • X. Zhu, Semi-supervised learning literature survey, Computer Sciences Technical Report 1530, University of Wisconsin-Madison, July, 2008.
    • (2008)
    • Zhu, X.1
  • 14
    • 84899006908 scopus 로고    scopus 로고
    • Schölkopf, Learning with local and global consistency, in: Advances in Neural Information Processing Systems 16,
    • D. Zhou, O. Bousquet, T.N. Lal, J..Weston, B. Schölkopf, Learning with local and global consistency, in: Advances in Neural Information Processing Systems 16, 2004.
    • (2004)
    • Zhou, D.1    Bousquet, O.2    Lal, T.N.3    Weston4
  • 15
    • 36348935562 scopus 로고    scopus 로고
    • Semi-supervised learning by mixed label propagation, in: The Twenty-Second AAAI Conference on Artificial Intelligence,
    • W. Tong, R. Jin, Semi-supervised learning by mixed label propagation, in: The Twenty-Second AAAI Conference on Artificial Intelligence, 2007.
    • (2007)
    • Tong, W.1    Jin, R.2
  • 16
    • 78651466404 scopus 로고    scopus 로고
    • Non-metric label propagation, in: International Joint Conference on Artificial Intelligence,
    • Y. Zhang, Z. Zhou, Non-metric label propagation, in: International Joint Conference on Artificial Intelligence, 2009.
    • (2009)
    • Zhang, Y.1    Zhou, Z.2
  • 17
    • 33749236252 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods, in: International Conference on Machine Learning, Pittsburgh, USA,
    • F. Wang, C. Zhang, Label propagation through linear neighborhoods, in: International Conference on Machine Learning, Pittsburgh, USA, 2006.
    • (2006)
    • Wang, F.1    Zhang, C.2
  • 18
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions, in: International Conference on Machine Learning,
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using Gaussian fields and harmonic functions, in: International Conference on Machine Learning, 2003.
    • (2003)
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 19
    • 78649464031 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering, in: Advances in Neural Information Processing Systems 14, Vancouver, British Columbia, Canada,
    • M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embedding and clustering, in: Advances in Neural Information Processing Systems 14, Vancouver, British Columbia, Canada, 2001.
    • (2001)
    • Belkin, M.1    Niyogi, P.2
  • 20
    • 34547970997 scopus 로고    scopus 로고
    • Spectral clustering and transductive learning with multiple views, in: International Conference on Machine Learning,
    • D. Zhou, C. Burges, Spectral clustering and transductive learning with multiple views, in: International Conference on Machine Learning, 2007.
    • (2007)
    • Zhou, D.1    Burges, C.2
  • 21
    • 33947233031 scopus 로고    scopus 로고
    • Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, in: Advances in Neural Information Processing Systems 16,
    • Y. Bengio, J. Paiement, P. Vincent, Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps, and spectral clustering, in: Advances in Neural Information Processing Systems 16, 2004.
    • (2004)
    • Bengio, Y.1    Paiement, J.2    Vincent, P.3
  • 22
    • 34547493902 scopus 로고    scopus 로고
    • Unsupervised locally embedded clustering for automatic high-dimensional data labeling, in: IEEE International Conference on Acoustics, Speech, and Signal Processing,
    • Y. Fu, T.S. Huang, Unsupervised locally embedded clustering for automatic high-dimensional data labeling, in: IEEE International Conference on Acoustics, Speech, and Signal Processing, 2007.
    • (2007)
    • Fu, Y.1    Huang, T.S.2
  • 23
    • 43049168302 scopus 로고    scopus 로고
    • Locally adaptive subspace and similarity metric learning for visual data clustering and retrieval
    • Fu Y., Li Z., Huang T.S., Katsaggelos A.K. Locally adaptive subspace and similarity metric learning for visual data clustering and retrieval. Comput. Vis. Image Understand. 2008, 110:390-402.
    • (2008) Comput. Vis. Image Understand. , vol.110 , pp. 390-402
    • Fu, Y.1    Li, Z.2    Huang, T.S.3    Katsaggelos, A.K.4
  • 24
    • 78649483398 scopus 로고    scopus 로고
    • Probabilistic subgraph matching approach based on convex relaxation, in: Energy Minimization Methods in Computer Vision and Pattern Recognition,
    • C. Schellewald, C. Schnorr, Probabilistic subgraph matching approach based on convex relaxation, in: Energy Minimization Methods in Computer Vision and Pattern Recognition, 2005.
    • (2005)
    • Schellewald, C.1    Schnorr, C.2
  • 25
    • 85161980097 scopus 로고    scopus 로고
    • Influence of graph construction on graph-based clustering measures, in: Advances in The Neural Information Processing Systems 21,
    • M. Maier, U. Luxburg, Influence of graph construction on graph-based clustering measures, in: Advances in The Neural Information Processing Systems 21, 2008.
    • (2008)
    • Maier, M.1    Luxburg, U.2
  • 26
    • 71149102018 scopus 로고    scopus 로고
    • Graph construction and b-matching for semi-supervised learning, in: International Conference on Machine Learning, Montreal, Canada,
    • T. Jebara, J. Wang, S. Chang, Graph construction and b-matching for semi-supervised learning, in: International Conference on Machine Learning, Montreal, Canada, 2009.
    • (2009)
    • Jebara, T.1    Wang, J.2    Chang, S.3
  • 27
    • 71149084539 scopus 로고    scopus 로고
    • Fitting a graph to vector data, in: International Conference on Machine Learning, Montreal, Canada,
    • S. Daitch, J. Kelner, D. Spielman, Fitting a graph to vector data, in: International Conference on Machine Learning, Montreal, Canada, 2009.
    • (2009)
    • Daitch, S.1    Kelner, J.2    Spielman, D.3
  • 28
    • 84864060454 scopus 로고    scopus 로고
    • Combining graph Laplacians for semi-supervised learning, in: Advances in Neural Information Processing Systems 18,
    • A. Argyriou, M. Herbster, M. Pontil, Combining graph Laplacians for semi-supervised learning, in: Advances in Neural Information Processing Systems 18, 2005.
    • (2005)
    • Argyriou, A.1    Herbster, M.2    Pontil, M.3
  • 29
    • 34547313657 scopus 로고    scopus 로고
    • Graph laplacians and their convergence on random neighborhood graphs
    • Hein M., Audibert J., Luxburg U. Graph laplacians and their convergence on random neighborhood graphs. J. Mach. Learn. Res. 2007, 8:1325-1368.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 1325-1368
    • Hein, M.1    Audibert, J.2    Luxburg, U.3
  • 30
    • 33744968466 scopus 로고    scopus 로고
    • Face recognition from a single image per person: A survey
    • Tan X., Chen S., Zhou Z., Zhang F. Face recognition from a single image per person: A survey. Pattern Recog. 2006, 39:1725-1745.
    • (2006) Pattern Recog. , vol.39 , pp. 1725-1745
    • Tan, X.1    Chen, S.2    Zhou, Z.3    Zhang, F.4
  • 31
    • 33750378734 scopus 로고    scopus 로고
    • Orthogonal Laplacian faces for face recognition
    • Cai D., He X., Han J., Zhang H. Orthogonal Laplacian faces for face recognition. IEEE Trans. Image Process. 2006, 15:3608-3614.
    • (2006) IEEE Trans. Image Process. , vol.15 , pp. 3608-3614
    • Cai, D.1    He, X.2    Han, J.3    Zhang, H.4
  • 32
    • 35148826924 scopus 로고    scopus 로고
    • Feature extraction by maximizing the average neighborhood margin, in: IEEE Conference on Computer Vision and Pattern Recognition,
    • F. Wang, C. Zhang, Feature extraction by maximizing the average neighborhood margin, in: IEEE Conference on Computer Vision and Pattern Recognition, 2007.
    • (2007)
    • Wang, F.1    Zhang, C.2
  • 33
    • 33745881038 scopus 로고    scopus 로고
    • Neighborhood preserving embedding, in: International Conference on Computer Vision
    • X. He, D. Cai, S. Yan, H. Zhang, Neighborhood preserving embedding, in: International Conference on Computer Vision, 2005.
    • (2005)
    • He, X.1    Cai, D.2    Yan, S.3    Zhang, H.4
  • 34
    • 85118285837 scopus 로고    scopus 로고
    • Local discriminant embedding and its variants, in: IEEE Conference on Computer Vision and Pattern Recognition,
    • H.T. Chen, H.W. Chang, T.L. Liu, Local discriminant embedding and its variants, in: IEEE Conference on Computer Vision and Pattern Recognition, 2005.
    • (2005)
    • Chen, H.T.1    Chang, H.W.2    Liu, T.L.3
  • 37
    • 56349119506 scopus 로고    scopus 로고
    • A unifying framework for spectral analysis ased dimensionality reduction, in: IEEE International Joint Conference on Neural Networks,
    • T. Zhang, D. Tao, X. Li, T. Yang, A unifying framework for spectral analysis based dimensionality reduction, in: IEEE International Joint Conference on Neural Networks, 2008.
    • (2008)
    • Zhang, T.1    Tao, D.2    Li, X.3    Yang, T.4
  • 38
    • 56349136031 scopus 로고    scopus 로고
    • Bayesian tensor analysis, in: IEEE International Joint Conference on Neural Networks,
    • D. Tao, J. Sun, J. Shen, X. Wu, X. Li, S. Maybank, C. Faloutsos, Bayesian tensor analysis, in: IEEE International Joint Conference on Neural Networks, 2008.
    • (2008)
    • Tao, D.1    Sun, J.2    Shen, J.3    Wu, X.4    Li, X.5    Maybank, S.6    Faloutsos, C.7
  • 40
    • 47749121391 scopus 로고    scopus 로고
    • Local coordinates alignment (lca): a novel manifold learning approach
    • Zhang T., Li X., Tao D., Yang J. Local coordinates alignment (lca): a novel manifold learning approach. Int. J. Pattern Recogn. Artif. Intell. 2008, 22:667-690.
    • (2008) Int. J. Pattern Recogn. Artif. Intell. , vol.22 , pp. 667-690
    • Zhang, T.1    Li, X.2    Tao, D.3    Yang, J.4
  • 41
    • 50649123949 scopus 로고    scopus 로고
    • Spectral regression for efficient regularized subspace learning, in: International Conference on Computer Vision,
    • D. Cai, X. He, J. Han, Spectral regression for efficient regularized subspace learning, in: International Conference on Computer Vision, 2007.
    • (2007)
    • Cai, D.1    He, X.2    Han, J.3
  • 42
    • 35148813570 scopus 로고    scopus 로고
    • Learning a spatially smooth subspace for face recognition, in: IEEE Conference on Computer Vision and Pattern Recognition,
    • D. Cai, X. He, Y. Hu, J. Han, T. Huang, Learning a spatially smooth subspace for face recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, 2007.
    • (2007)
    • Cai, D.1    He, X.2    Hu, Y.3    Han, J.4    Huang, T.5
  • 43
    • 63449101804 scopus 로고    scopus 로고
    • Regularized locality preserving indexing via spectral regression, in: ACM International Conference on Information and Knowledge Management,
    • D. Cai, X. He, W. Zhang, J. Han, Regularized locality preserving indexing via spectral regression, in: ACM International Conference on Information and Knowledge Management, 2007.
    • (2007)
    • Cai, D.1    He, X.2    Zhang, W.3    Han, J.4
  • 44
    • 49749131620 scopus 로고    scopus 로고
    • Spectral regression: A unified approach for sparse subspace learning, in: International Conference on Data Mining,
    • D. Cai, X. He, J. Han. Spectral regression: A unified approach for sparse subspace learning, in: International Conference on Data Mining, 2007.
    • (2007)
    • Cai, D.1    He, X.2    Han, J.3
  • 45
    • 0004236492 scopus 로고    scopus 로고
    • The Johns Hopkins University Press, Baltimore, MD, USA
    • Golub G.H., Van Loan C.F. Matrix Computations 1996, The Johns Hopkins University Press, Baltimore, MD, USA. third edition.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 46
    • 78649488429 scopus 로고
    • Face recognition: the problem of compensating for changes in illumination direction, in: European Conference on Computer Vision,
    • Y. Moses, Y. Adini, S. Ullman, Face recognition: the problem of compensating for changes in illumination direction, in: European Conference on Computer Vision, 1994.
    • (1994)
    • Moses, Y.1    Adini, Y.2    Ullman, S.3
  • 47
    • 78649462985 scopus 로고    scopus 로고
    • UCI Repository of Machine Learning Databases, Department of Information and Computer Sciences,University of California, Irvine,
    • C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, Department of Information and Computer Sciences,University of California, Irvine,1998.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 48
    • 78649459887 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from examples, Technical Report TR-2004-06, Department of Computer Science, University of Chicago,
    • M. Belkin, P. Niyogi, V. Sindhwani, Manifold regularization: a geometric framework for learning from examples, Technical Report TR-2004-06, Department of Computer Science, University of Chicago, 2004.
    • (2004)
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 51
    • 78649478150 scopus 로고    scopus 로고
    • The AR face database, CVC Technical Report #24, June
    • A.M. Martinez and R. Benavente, The AR face database, CVC Technical Report #24, June 1998.
    • (1998)
    • Martinez, A.M.1    Benavente, R.2
  • 53
    • 78649490439 scopus 로고    scopus 로고
    • Feature selection in face recognition: A sparse representation perspective, UC Berkeley Technical Report UCB/EECS-2007-99,
    • A. Yang, J. Wright, Y. Ma, S. Sastry, Feature selection in face recognition: A sparse representation perspective, UC Berkeley Technical Report UCB/EECS-2007-99, 2007.
    • (2007)
    • Yang, A.1    Wright, J.2    Ma, Y.3    Sastry, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.