메뉴 건너뛰기




Volumn , Issue , 2010, Pages

A hybrid prediction model with F-score feature selection for type II Diabetes databases

Author keywords

accuracy sensitivity; AUC; data mining; dimensionality reduction; F score; feature selection; medical data; Pima Indians diabetes dataset; specificity; Support Vector Machine

Indexed keywords

ACCURACY SENSITIVITY; AUC; DATA SETS; DIMENSIONALITY REDUCTION; F-SCORE; FEATURE SELECTION; MEDICAL DATA; SPECIFICITY;

EID: 78649409641     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1858378.1858391     Document Type: Conference Paper
Times cited : (19)

References (26)
  • 1
    • 33748186432 scopus 로고    scopus 로고
    • Logical analysis of data - An overview: From combinatorial optimization to medical applications
    • Hammer, P. L., & Bonates, T. O. (2006). Logical analysis of data - An overview: From combinatorial optimization to medical applications. Annals of Operations Research, 148, 203-225
    • (2006) Annals of Operations Research , vol.148 , pp. 203-225
    • Hammer, P.L.1    Bonates, T.O.2
  • 4
    • 0242284429 scopus 로고    scopus 로고
    • Brussels: International diabetes federation (2nd ed.).
    • Gan, D. (2003). Diabetes atlas, Brussels: International diabetes federation (2nd ed.). http://www.eatlas.idf.org/webdata/docs/Atlas%202003- Summary.pdf
    • (2003) Diabetes Atlas
    • Gan, D.1
  • 5
    • 37849038258 scopus 로고    scopus 로고
    • Automated identification of 461 diabetic type 2 subjects with and without neuropathy using wavelet transform 462 Q7 on pedobarograph
    • Acharya, U. R., Tan, P. H., Subramanian, T., et al. (2008). Automated identification of 461 diabetic type 2 subjects with and without neuropathy using wavelet transform 462 Q7 on pedobarograph. Journal of Medical Systems, 32(1), 21-29.
    • (2008) Journal of Medical Systems , vol.32 , Issue.1 , pp. 21-29
    • Acharya, U.R.1    Tan, P.H.2    Subramanian, T.3
  • 6
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • D.A. Bell, H. Wang, 2004. A formalism for relevance and its application in feature subset selection, Machine Learning 41, 175-195.
    • (2004) Machine Learning , vol.41 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 11
    • 0036532821 scopus 로고    scopus 로고
    • A hybrid filter/wrapper approach of feature selection using information theory
    • Sebban, M., & Nock, R. (2002). A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition, 35(4), 835-846.
    • (2002) Pattern Recognition , vol.35 , Issue.4 , pp. 835-846
    • Sebban, M.1    Nock, R.2
  • 12
    • 0013326060 scopus 로고    scopus 로고
    • Feature Selection for Data Mining
    • Liu H and Yu L 1997. Feature Selection for Data Mining. Intelligent Data Analysis 1(3), 131-156.
    • (1997) Intelligent Data Analysis , vol.1 , Issue.3 , pp. 131-156
    • Liu, H.1    Yu, L.2
  • 13
    • 0002485248 scopus 로고    scopus 로고
    • Application of machine learning to medical diagnosis
    • R.S. Michalski, I. Bratko and M. Kubat (eds,) John Wiley & Sons
    • Kononenko I, Bratko I, Kukar M, 1998. Application of machine learning to medical diagnosis. In R.S. Michalski, I. Bratko and M. Kubat (eds,) Machine Learning and Data Mining: Methods and Applications: John Wiley & Sons, 389-408.
    • (1998) Machine Learning and Data Mining: Methods and Applications , pp. 389-408
    • Kononenko, I.1    Bratko, I.2    Kukar, M.3
  • 16
    • 28544451728 scopus 로고    scopus 로고
    • An analysis of thyroid function diagnosis using Bayesian-type and SOM type neural networks
    • Hoshi, K., Kawakami, J., Kumagai, M., et al. (2005). An analysis of thyroid function diagnosis using Bayesian-type and SOM type neural networks. Chemical and Pharmaceutical Bulletin, 53, 1570-1574.
    • (2005) Chemical and Pharmaceutical Bulletin , vol.53 , pp. 1570-1574
    • Hoshi, K.1    Kawakami, J.2    Kumagai, M.3
  • 18
    • 34248545094 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine
    • Polat, K., Gunes, S., & Aslan, A. (2008). A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine. Expert Systems with Applications, 34(1), 214-221.
    • (2008) Expert Systems with Applications , vol.34 , Issue.1 , pp. 214-221
    • Polat, K.1    Gunes, S.2    Aslan, A.3
  • 19
    • 77957831716 scopus 로고    scopus 로고
    • A Hybrid Prediction Model for Type-2 Diabetic Patient
    • doi:10.1016/j.eswa.2010.05.078
    • Patil, B. M., et al. (2010). A Hybrid Prediction Model for Type-2 Diabetic Patient. Expert Systems with Applications, doi:10.1016/j.eswa.2010.05. 078.
    • (2010) Expert Systems with Applications
    • Patil, B.M.1
  • 24
    • 0036158552 scopus 로고    scopus 로고
    • A simple decomposition method for support vector machine
    • Hsu C W and Lin C J, 2002. A simple decomposition method for support vector machine. Machine Learning 46(1-3), 219-314.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 219-314
    • Hsu, C.W.1    Lin, C.J.2
  • 25
    • 34248585875 scopus 로고    scopus 로고
    • Prediction model building and feature selection with support vector machines in breast cancer diagnosis
    • doi:10.1016/j.eswa.2006.09.041
    • Cheng-Lung Huang, Hung-Chang Liao b, Mu-Chen Chen c, 2008. Prediction model building and feature selection with support vector machines in breast cancer diagnosis, Expert Systems with Applications, 578-587 doi:10.1016/j.eswa. 2006.09.041
    • (2008) Expert Systems with Applications , pp. 578-587
    • Huang, C.-L.1    Liao, H.-C.2    Chen, M.-.3
  • 26
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • Delen, D., Walker, G., & Kadam, A. (2005). Predicting breast cancer survivability: A comparison of three data mining methods. Artificial Intelligence in Medicine, 34, 472 113-127.
    • (2005) Artificial Intelligence in Medicine , vol.34 , Issue.472 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.