-
1
-
-
0002377875
-
Automated composition control of nutrient solution in closed soilless culture systems
-
D. Savvas and G. Manos, "Automated composition control of nutrient solution in closed soilless culture systems", J. Agricult. Eng. Res., vol. 73, no. 1, pp. 29-33, 1999.
-
(1999)
J. Agricult. Eng. Res.
, vol.73
, Issue.1
, pp. 29-33
-
-
Savvas, D.1
Manos, G.2
-
2
-
-
0032580260
-
Modelling plant nutrition of horticultural crops: A review
-
J. Le Bot, S. Adamowicz, and P. Robin, "Modelling plant nutrition of horticultural crops: A review", Scientia Horticulturae, vol. 74, pp. 47-82, 1998.
-
(1998)
Scientia Horticulturae
, vol.74
, pp. 47-82
-
-
Le Bot, J.1
Adamowicz, S.2
Robin, P.3
-
3
-
-
13144258351
-
-
Ph. D. dissertation, Dept. Agricult. Eng., Wageningen University, Wageningen, The Netherlands
-
T. H. Gieling, "Control of water supply and specific nutrient application in closed growing systems", Ph. D. dissertation, Dept. Agricult. Eng., Wageningen University, Wageningen, The Netherlands, 2001.
-
(2001)
Control of Water Supply and Specific Nutrient Application in Closed Growing Systems
-
-
Gieling, T.H.1
-
5
-
-
67650509323
-
Measurement and estimation of temperature distribution inside core and cavity of the mold using virtual micro sensors
-
Aug
-
R. C. Luo, Z. W. Li, and M. H. Li, "Measurement and estimation of temperature distribution inside core and cavity of the mold using virtual micro sensors", in Proc. IEEE Int. Conf. Multisensor Fusion and Integration for Intell. Syst., Aug. 2008, pp. 278-283.
-
(2008)
Proc. IEEE Int. Conf. Multisensor Fusion and Integration for Intell. Syst.
, pp. 278-283
-
-
Luo, R.C.1
Li, Z.W.2
Li, M.H.3
-
7
-
-
0345528826
-
Multi-sensor data fusion structures in autonomous systems: A ReVISEw
-
H. Xinhan and W. Min, "Multi-sensor data fusion structures in autonomous systems: A ReVISEw", in Proc. 2003 IEEE Int. Symp. Intell. Control, 2003, pp. 817-821.
-
(2003)
Proc. 2003 IEEE Int. Symp. Intell. Control
, pp. 817-821
-
-
Xinhan, H.1
Min, W.2
-
8
-
-
46449083254
-
Direct Virtual Sensor (DVS) design in vehicle sideslip angle estimation
-
Jul
-
M. Milanese, D. Regruto, and A. Fortina, "Direct Virtual Sensor (DVS) design in vehicle sideslip angle estimation", in Proc. Amer. Control Conf, Jul. 2007, pp. 3654-3658.
-
(2007)
Proc. Amer. Control Conf.
, pp. 3654-3658
-
-
Milanese, M.1
Regruto, D.2
Fortina, A.3
-
9
-
-
0028317538
-
A new algorithm for sensorless operation of permanent magnet motors[J]
-
Jan
-
N. Ertugrul and P. Acarnlney, "A new algorithm for sensorless operation of permanent magnet motors[J]", IEEE Trans. Ind. Appl, vol. 30, no. 1, pp. 126-133, Jan. 1994.
-
(1994)
IEEE Trans. Ind. Appl.
, vol.30
, Issue.1
, pp. 126-133
-
-
Ertugrul, N.1
Acarnlney, P.2
-
10
-
-
0034546143
-
Using mutual information to pre-process input data for a virtual sensor
-
Chicago, IL
-
P. B. Deignan, J. Peter, and H. Meckl, "Using mutual information to pre-process input data for a virtual sensor", in Proc. Amer. Control Conf, Chicago, IL, 2000, pp. 2927-2931.
-
(2000)
Proc. Amer. Control Conf.
, pp. 2927-2931
-
-
Deignan, P.B.1
Peter, J.2
Meckl, H.3
-
11
-
-
44449159725
-
Artificial neural networks and neurofuzzy inference systems as virtual sensors for hydrogen safety prediction
-
V. Karri, T. Ho, and O. Madsen, "Artificial neural networks and neurofuzzy inference systems as virtual sensors for hydrogen safety prediction", Int. J. Hydrogen Energy, vol. 33, no. 11, pp. 2857-2867, 2008.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, Issue.11
, pp. 2857-2867
-
-
Karri, V.1
Ho, T.2
Madsen, O.3
-
12
-
-
67349256117
-
2 using dynamic neural networks
-
2 using dynamic neural networks", Comput. Elect. Eng., vol. 35, no. 4, pp. 578-586, 2009.
-
(2009)
Comput. Elect. Eng.
, vol.35
, Issue.4
, pp. 578-586
-
-
Shakil, M.1
Elshafei, M.2
Habib, M.A.3
Maleki, F.A.4
-
13
-
-
0032022388
-
Performance evalution of sequential minimal radial basis function (RBF) neural network learning algorithm[J]
-
Oct
-
Y. W. Lu, N. Sundararajan, and P. Saratchandran, "Performance evalution of sequential minimal radial basis function (RBF) neural network learning algorithm[J]", IEEE Trans. Neural Netw., vol. 9, no. 5, pp. 308-317, Oct. 1998.
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, Issue.5
, pp. 308-317
-
-
Lu, Y.W.1
Sundararajan, N.2
Saratchandran, P.3
-
15
-
-
33847008648
-
Probabilistic support vector machines for multi-class alcohol identification
-
F. J. Acevedo and S. Maldonado et al, "Probabilistic support vector machines for multi-class alcohol identification", Sens. Actuators B, vol. 122, pp. 227-235, 2007.
-
(2007)
Sens. Actuators B
, vol.122
, pp. 227-235
-
-
Acevedo, F.J.1
Maldonado, S.2
-
16
-
-
27444433806
-
Soft-sensor development for fed-batch bioreactors using support vector regression
-
K. Desai, Y. Badhe, S. S. Tambe, and B. D. Kulkarni, "Soft-sensor development for fed-batch bioreactors using support vector regression", Biochem. Eng. J., vol. 27, no. 3, pp. 225-239, 2006.
-
(2006)
Biochem. Eng. J.
, vol.27
, Issue.3
, pp. 225-239
-
-
Desai, K.1
Badhe, Y.2
Tambe, S.S.3
Kulkarni, B.D.4
-
17
-
-
33947266512
-
Development of a soft sensor for a batch distillation column using support vector regression techniques
-
P. Jain, I. Rahman, and B. D. Kulkarni, "Development of a soft sensor for a batch distillation column using support vector regression techniques", Chem. Eng. Res. Design, vol. 85, no. A2, pp. 283-287, 2007.
-
(2007)
Chem. Eng. Res. Design
, vol.85
, Issue.A2
, pp. 283-287
-
-
Jain, P.1
Rahman, I.2
Kulkarni, B.D.3
-
19
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers", Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
21
-
-
34147217126
-
A study of self-calibration for ion sensor based onLS-SVM
-
F. Chen and D. Yang, "A study of self-calibration for ion sensor based onLS-SVM", PatternRecogn. Artif Intell, vol. 20, no. 1, pp. 115-118, 2007.
-
(2007)
PatternRecogn. Artif Intell
, vol.20
, Issue.1
, pp. 115-118
-
-
Chen, F.1
Yang, D.2
-
22
-
-
0346881149
-
Experimentally optimal? in support vector regression for different noise models and parameter settings [J]
-
A. Chalimourda, B. Scholkopf, and A. Smola, "Experimentally optimal? in support vector regression for different noise models and parameter settings [J]", Neural Netw., vol. 17, pp. 127-141, 2004.
-
(2004)
Neural Netw.
, vol.17
, pp. 127-141
-
-
Chalimourda, A.1
Scholkopf, B.2
Smola, A.3
-
24
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Oct
-
J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, "Weighted least squares support vector machines: Robustness and sparse approximation", Neuro-Computing, vol. 48, no. 1-4, pp. 85-105, Oct. 2002.
-
(2002)
Neuro-Computing
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
25
-
-
0037695279
-
-
Singapore: World Scientific
-
J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines. Singapore: World Scientific, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
|