메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 462-468

Virtual ion selective electrode for online measurement of nutrient solution components

Author keywords

Least squares support vector machine (LS SVM); multiple components; nutrient solution; virtual ion selective electrode (VISE)

Indexed keywords

CURRENT MEASUREMENTS; ELECTRONIC CONDUCTIVITY; FITTING ERROR; GLOBAL OPTIMUM; LEAST SQUARES SUPPORT VECTOR MACHINES; MODEL COMPLEXITY; MULTIPLE COMPONENTS; NUTRIENT SOLUTION; ON-LINE MEASUREMENT; OPTIMAL CONTROLS; REGULARIZATION PARAMETERS; SENSOR DATA; VARIATION REGULARITY; VIRTUAL ION SELECTIVE ELECTRODE (VISE);

EID: 78649407106     PISSN: 1530437X     EISSN: None     Source Type: Journal    
DOI: 10.1109/JSEN.2010.2060479     Document Type: Article
Times cited : (15)

References (25)
  • 1
    • 0002377875 scopus 로고    scopus 로고
    • Automated composition control of nutrient solution in closed soilless culture systems
    • D. Savvas and G. Manos, "Automated composition control of nutrient solution in closed soilless culture systems", J. Agricult. Eng. Res., vol. 73, no. 1, pp. 29-33, 1999.
    • (1999) J. Agricult. Eng. Res. , vol.73 , Issue.1 , pp. 29-33
    • Savvas, D.1    Manos, G.2
  • 2
    • 0032580260 scopus 로고    scopus 로고
    • Modelling plant nutrition of horticultural crops: A review
    • J. Le Bot, S. Adamowicz, and P. Robin, "Modelling plant nutrition of horticultural crops: A review", Scientia Horticulturae, vol. 74, pp. 47-82, 1998.
    • (1998) Scientia Horticulturae , vol.74 , pp. 47-82
    • Le Bot, J.1    Adamowicz, S.2    Robin, P.3
  • 5
    • 67650509323 scopus 로고    scopus 로고
    • Measurement and estimation of temperature distribution inside core and cavity of the mold using virtual micro sensors
    • Aug
    • R. C. Luo, Z. W. Li, and M. H. Li, "Measurement and estimation of temperature distribution inside core and cavity of the mold using virtual micro sensors", in Proc. IEEE Int. Conf. Multisensor Fusion and Integration for Intell. Syst., Aug. 2008, pp. 278-283.
    • (2008) Proc. IEEE Int. Conf. Multisensor Fusion and Integration for Intell. Syst. , pp. 278-283
    • Luo, R.C.1    Li, Z.W.2    Li, M.H.3
  • 6
  • 7
    • 0345528826 scopus 로고    scopus 로고
    • Multi-sensor data fusion structures in autonomous systems: A ReVISEw
    • H. Xinhan and W. Min, "Multi-sensor data fusion structures in autonomous systems: A ReVISEw", in Proc. 2003 IEEE Int. Symp. Intell. Control, 2003, pp. 817-821.
    • (2003) Proc. 2003 IEEE Int. Symp. Intell. Control , pp. 817-821
    • Xinhan, H.1    Min, W.2
  • 8
    • 46449083254 scopus 로고    scopus 로고
    • Direct Virtual Sensor (DVS) design in vehicle sideslip angle estimation
    • Jul
    • M. Milanese, D. Regruto, and A. Fortina, "Direct Virtual Sensor (DVS) design in vehicle sideslip angle estimation", in Proc. Amer. Control Conf, Jul. 2007, pp. 3654-3658.
    • (2007) Proc. Amer. Control Conf. , pp. 3654-3658
    • Milanese, M.1    Regruto, D.2    Fortina, A.3
  • 9
    • 0028317538 scopus 로고
    • A new algorithm for sensorless operation of permanent magnet motors[J]
    • Jan
    • N. Ertugrul and P. Acarnlney, "A new algorithm for sensorless operation of permanent magnet motors[J]", IEEE Trans. Ind. Appl, vol. 30, no. 1, pp. 126-133, Jan. 1994.
    • (1994) IEEE Trans. Ind. Appl. , vol.30 , Issue.1 , pp. 126-133
    • Ertugrul, N.1    Acarnlney, P.2
  • 10
    • 0034546143 scopus 로고    scopus 로고
    • Using mutual information to pre-process input data for a virtual sensor
    • Chicago, IL
    • P. B. Deignan, J. Peter, and H. Meckl, "Using mutual information to pre-process input data for a virtual sensor", in Proc. Amer. Control Conf, Chicago, IL, 2000, pp. 2927-2931.
    • (2000) Proc. Amer. Control Conf. , pp. 2927-2931
    • Deignan, P.B.1    Peter, J.2    Meckl, H.3
  • 11
    • 44449159725 scopus 로고    scopus 로고
    • Artificial neural networks and neurofuzzy inference systems as virtual sensors for hydrogen safety prediction
    • V. Karri, T. Ho, and O. Madsen, "Artificial neural networks and neurofuzzy inference systems as virtual sensors for hydrogen safety prediction", Int. J. Hydrogen Energy, vol. 33, no. 11, pp. 2857-2867, 2008.
    • (2008) Int. J. Hydrogen Energy , vol.33 , Issue.11 , pp. 2857-2867
    • Karri, V.1    Ho, T.2    Madsen, O.3
  • 13
    • 0032022388 scopus 로고    scopus 로고
    • Performance evalution of sequential minimal radial basis function (RBF) neural network learning algorithm[J]
    • Oct
    • Y. W. Lu, N. Sundararajan, and P. Saratchandran, "Performance evalution of sequential minimal radial basis function (RBF) neural network learning algorithm[J]", IEEE Trans. Neural Netw., vol. 9, no. 5, pp. 308-317, Oct. 1998.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.5 , pp. 308-317
    • Lu, Y.W.1    Sundararajan, N.2    Saratchandran, P.3
  • 15
    • 33847008648 scopus 로고    scopus 로고
    • Probabilistic support vector machines for multi-class alcohol identification
    • F. J. Acevedo and S. Maldonado et al, "Probabilistic support vector machines for multi-class alcohol identification", Sens. Actuators B, vol. 122, pp. 227-235, 2007.
    • (2007) Sens. Actuators B , vol.122 , pp. 227-235
    • Acevedo, F.J.1    Maldonado, S.2
  • 16
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • K. Desai, Y. Badhe, S. S. Tambe, and B. D. Kulkarni, "Soft-sensor development for fed-batch bioreactors using support vector regression", Biochem. Eng. J., vol. 27, no. 3, pp. 225-239, 2006.
    • (2006) Biochem. Eng. J. , vol.27 , Issue.3 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 17
    • 33947266512 scopus 로고    scopus 로고
    • Development of a soft sensor for a batch distillation column using support vector regression techniques
    • P. Jain, I. Rahman, and B. D. Kulkarni, "Development of a soft sensor for a batch distillation column using support vector regression techniques", Chem. Eng. Res. Design, vol. 85, no. A2, pp. 283-287, 2007.
    • (2007) Chem. Eng. Res. Design , vol.85 , Issue.A2 , pp. 283-287
    • Jain, P.1    Rahman, I.2    Kulkarni, B.D.3
  • 19
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J. A. K. Suykens and J. Vandewalle, "Least squares support vector machine classifiers", Neural Process. Lett., vol. 9, no. 3, pp. 293-300, 1999.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 21
    • 34147217126 scopus 로고    scopus 로고
    • A study of self-calibration for ion sensor based onLS-SVM
    • F. Chen and D. Yang, "A study of self-calibration for ion sensor based onLS-SVM", PatternRecogn. Artif Intell, vol. 20, no. 1, pp. 115-118, 2007.
    • (2007) PatternRecogn. Artif Intell , vol.20 , Issue.1 , pp. 115-118
    • Chen, F.1    Yang, D.2
  • 22
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal? in support vector regression for different noise models and parameter settings [J]
    • A. Chalimourda, B. Scholkopf, and A. Smola, "Experimentally optimal? in support vector regression for different noise models and parameter settings [J]", Neural Netw., vol. 17, pp. 127-141, 2004.
    • (2004) Neural Netw. , vol.17 , pp. 127-141
    • Chalimourda, A.1    Scholkopf, B.2    Smola, A.3
  • 24
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Oct
    • J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, "Weighted least squares support vector machines: Robustness and sparse approximation", Neuro-Computing, vol. 48, no. 1-4, pp. 85-105, Oct. 2002.
    • (2002) Neuro-Computing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.