메뉴 건너뛰기




Volumn 37, Issue 7-8, 2010, Pages 942-947

Modelling pile capacity using Gaussian process regression

Author keywords

Gaussian process regression; Janbu formula; Pile capacity; Support vector machines

Indexed keywords

DATA SETS; EMPIRICAL RELATIONS; GAUSSIAN PROCESS; GAUSSIAN PROCESS REGRESSION; JANBU FORMULA; LOAD-BEARING CAPACITY; PILE CAPACITY; RADIAL BASIS FUNCTIONS; REGRESSION MODELLING; SUPPORT VECTOR;

EID: 78349308433     PISSN: 0266352X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compgeo.2010.07.012     Document Type: Article
Times cited : (136)

References (45)
  • 2
    • 0028977232 scopus 로고
    • Neural networks: an alternative to the pile driving formulas
    • Chan W.T., Chow Y.K., Liu I.F. Neural networks: an alternative to the pile driving formulas. Comput Geotech 1995, 17:135-156.
    • (1995) Comput Geotech , vol.17 , pp. 135-156
    • Chan, W.T.1    Chow, Y.K.2    Liu, I.F.3
  • 3
    • 34247508683 scopus 로고    scopus 로고
    • Gaussian process regression for multivariate spectroscopic calibration
    • Chen T., Morris J., Martin E. Gaussian process regression for multivariate spectroscopic calibration. Chemometr Intell Lab Syst 2007, 87(1):59-71.
    • (2007) Chemometr Intell Lab Syst , vol.87 , Issue.1 , pp. 59-71
    • Chen, T.1    Morris, J.2    Martin, E.3
  • 4
    • 0028977138 scopus 로고
    • Predication of pile capacity from stress-wave measurements: a neural network approach
    • Chow Y.K., Chan W.T., Liu I.F., Lee S.L. Predication of pile capacity from stress-wave measurements: a neural network approach. Int J Numer Anal Methods Geomech 1995, 19:107-126.
    • (1995) Int J Numer Anal Methods Geomech , vol.19 , pp. 107-126
    • Chow, Y.K.1    Chan, W.T.2    Liu, I.F.3    Lee, S.L.4
  • 6
    • 4444258491 scopus 로고    scopus 로고
    • Automatic parameters selection for SVM based on GA. In: Proceedings of the 5″ world congress on intelligent control and automation, IEEE, June 15-19, Hangzhou, PR China;
    • Chunhong Z, Licheng J. Automatic parameters selection for SVM based on GA. In: Proceedings of the 5″ world congress on intelligent control and automation, IEEE, June 15-19, Hangzhou, PR China; 2004. p. 1869-72.
    • (2004) , pp. 1869-72
    • Chunhong, Z.1    Licheng, J.2
  • 7
    • 0019596045 scopus 로고
    • New design correlations for piles in sand
    • Coyle H.M., Castello R.R. New design correlations for piles in sand. J Geotech Eng 1981, 107(7):965-986.
    • (1981) J Geotech Eng , vol.107 , Issue.7 , pp. 965-986
    • Coyle, H.M.1    Castello, R.R.2
  • 8
    • 37849189166 scopus 로고    scopus 로고
    • Undrained lateral load capacity of piles in clay using artificial neural network
    • Das S.K., Basudhar P.K. Undrained lateral load capacity of piles in clay using artificial neural network. Comput Geotech 2006, 33:454-459.
    • (2006) Comput Geotech , vol.33 , pp. 454-459
    • Das, S.K.1    Basudhar, P.K.2
  • 9
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and applications
    • Dibike Y.B., Velickov S., Solomatine D.P., Abbott M.B. Model induction with support vector machines: introduction and applications. J Comput Civil Eng 2001, 15:208-216.
    • (2001) J Comput Civil Eng , vol.15 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.P.3    Abbott, M.B.4
  • 11
    • 78349306988 scopus 로고
    • Development of guidelines for construction control of pile driving and estimation of pile capacity (Phase I), Report no. WA-RD-68.1, Washington State Department of Transportation;
    • Fragaszy RJ, Higgins JD, Lawton EC. Development of guidelines for construction control of pile driving and estimation of pile capacity (Phase I), Report no. WA-RD-68.1, Washington State Department of Transportation; 1985. p. 83.
    • (1985) , pp. 83
    • Fragaszy, R.J.1    Higgins, J.D.2    Lawton, E.C.3
  • 12
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • Friedrichs F., Igel C. Evolutionary tuning of multiple SVM parameters. Neurocomputing 2005, 64(C):107-117.
    • (2005) Neurocomputing , vol.64 , Issue.C , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 13
    • 33750124478 scopus 로고    scopus 로고
    • Efficient parameter selection for support vector machines in classification and regression via model-based global optimization. In: Proceedings of international joint conference on neural networks, Montreal, Canada, July 31-August 4;
    • Frohlich H, Zell A. Efficient parameter selection for support vector machines in classification and regression via model-based global optimization. In: Proceedings of international joint conference on neural networks, Montreal, Canada, July 31-August 4; 2005. p. 1431-36.
    • (2005) , pp. 1431-36
    • Frohlich, H.1    Zell, A.2
  • 16
    • 0030414004 scopus 로고    scopus 로고
    • Pile driving records reanalyzed using neural networks
    • Goh A.T.C. Pile driving records reanalyzed using neural networks. J Geotech Eng, ASCE 1996, 122(6):492-495.
    • (1996) J Geotech Eng, ASCE , vol.122 , Issue.6 , pp. 492-495
    • Goh, A.T.C.1
  • 17
    • 11344291763 scopus 로고    scopus 로고
    • Bayesian neural network analysis of undrained side resistance of drilled shafts
    • Goh A.T.C., Kulhawy F.H., Chua C.G. Bayesian neural network analysis of undrained side resistance of drilled shafts. J Geotech Geoenviron Eng, ASCE 2005, 131(1):84-93.
    • (2005) J Geotech Geoenviron Eng, ASCE , vol.131 , Issue.1 , pp. 84-93
    • Goh, A.T.C.1    Kulhawy, F.H.2    Chua, C.G.3
  • 18
    • 58949092610 scopus 로고    scopus 로고
    • Application of support vector machines in scour prediction on grade-control structures
    • Goel A., Pal M. Application of support vector machines in scour prediction on grade-control structures. Eng Appl Artificial Intell 2009, 22(2):216-223.
    • (2009) Eng Appl Artificial Intell , vol.22 , Issue.2 , pp. 216-223
    • Goel, A.1    Pal, M.2
  • 19
    • 0027627965 scopus 로고
    • Working with neural networks
    • Hammerstorm D. Working with neural networks. IEEE Spectrum 1993, 30(7):46-53.
    • (1993) IEEE Spectrum , vol.30 , Issue.7 , pp. 46-53
    • Hammerstorm, D.1
  • 20
    • 18144384988 scopus 로고
    • The efficiency of the hammer blow, and its effects with reference to piling
    • Hiley A. The efficiency of the hammer blow, and its effects with reference to piling. Engineering, London 1922, 673.
    • (1922) Engineering, London , pp. 673
    • Hiley, A.1
  • 22
    • 78349310708 scopus 로고    scopus 로고
    • Gaussian process models for robust regression, classification, and reinforcement learning. PhD thesis. Technischen Universität Darmstadt;
    • Kuss M. Gaussian process models for robust regression, classification, and reinforcement learning. PhD thesis. Technischen Universität Darmstadt; 2006.
    • (2006)
    • Kuss, M.1
  • 23
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms
    • Keerthi S.S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Trans Neural Network 2002, 13:1225-1229.
    • (2002) IEEE Trans Neural Network , vol.13 , pp. 1225-1229
    • Keerthi, S.S.1
  • 24
    • 85148475025 scopus 로고    scopus 로고
    • Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search. In: International conference on intelligent computing, Kunming, China,
    • Liu R, Liu E, Yang J, Li M, Wang F. Optimizing the hyper-parameters for SVM by combining evolution strategies with a grid search. In: International conference on intelligent computing, Kunming, China, vol. 44; 2006. p. 712-21.
    • (2006) , vol.44 , pp. 712-21
    • Liu, R.1    Liu, E.2    Yang, J.3    Li, M.4    Wang, F.5
  • 25
    • 34848877457 scopus 로고    scopus 로고
    • Multiclass SVM design and parameter selection with genetic algorithms. In: Proceedings of the ninth Brazilian symposium on neural networks (SBRN'06);
    • Lorena AC, de Carvalho ACPLF. Multiclass SVM design and parameter selection with genetic algorithms. In: Proceedings of the ninth Brazilian symposium on neural networks (SBRN'06); 2006. p. 23-8.
    • (2006) , pp. 23-8
    • Lorena, A.C.1    de Carvalho, A.C.P.L.F.2
  • 26
    • 33845659986 scopus 로고    scopus 로고
    • Predictive control of a gas-liquid separation plant based on a Gaussian process model
    • Likar B., Kocijan J. Predictive control of a gas-liquid separation plant based on a Gaussian process model. Comput Chem Eng 2007, 31(3):142-152.
    • (2007) Comput Chem Eng , vol.31 , Issue.3 , pp. 142-152
    • Likar, B.1    Kocijan, J.2
  • 27
    • 78349306707 scopus 로고    scopus 로고
    • Axial capacity prediction for driven piles using ANN: model comparison. GeoTrans 2004. Geotechnical engineering for transportation projects (GSP No. 126). In: Yegian Mishac K, Kavazanjian Edward, editors, July 27-31; 2004, Los Angeles, California, USA.
    • Lok TMH, Che WF. Axial capacity prediction for driven piles using ANN: model comparison. GeoTrans 2004. Geotechnical engineering for transportation projects (GSP No. 126). In: Yegian Mishac K, Kavazanjian Edward, editors, July 27-31; 2004, Los Angeles, California, USA.
    • Lok, T.M.H.1    Che, W.F.2
  • 28
    • 0016928323 scopus 로고
    • Bearing capacity and settlement of pile foundations
    • Meyrehof G.G. Bearing capacity and settlement of pile foundations. J Geotech Eng, ASCE 1976, 102:196-228.
    • (1976) J Geotech Eng, ASCE , vol.102 , pp. 196-228
    • Meyrehof, G.G.1
  • 29
    • 85007613389 scopus 로고    scopus 로고
    • Kernel methods in remote sensing: a review
    • Pal M. Kernel methods in remote sensing: a review. ISH J Hydraulic Eng (special issue) 2009, 15(1):194-215.
    • (2009) ISH J Hydraulic Eng (special issue) , vol.15 , Issue.1 , pp. 194-215
    • Pal, M.1
  • 30
    • 45749119086 scopus 로고    scopus 로고
    • Modelling pile capacity using support vector machines and generalized regression neural network
    • Pal M., Deswal S. Modelling pile capacity using support vector machines and generalized regression neural network. ASCE J Geotech Geoenviron Eng 2008, 134:1021-1024.
    • (2008) ASCE J Geotech Geoenviron Eng , vol.134 , pp. 1021-1024
    • Pal, M.1    Deswal, S.2
  • 31
    • 34548509470 scopus 로고    scopus 로고
    • Prediction of end-depth-ratio and discharge in trapezoidal shaped channels using support vector machines
    • Pal M., Goel A. Prediction of end-depth-ratio and discharge in trapezoidal shaped channels using support vector machines. Water Resour Manage 2007, 21:1763-1780.
    • (2007) Water Resour Manage , vol.21 , pp. 1763-1780
    • Pal, M.1    Goel, A.2
  • 32
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machines-based modelling of seismic liquefaction potential
    • Pal M. Support vector machines-based modelling of seismic liquefaction potential. Int J Numer Anal Methods Geomech 2006, 30:983-996.
    • (2006) Int J Numer Anal Methods Geomech , vol.30 , pp. 983-996
    • Pal, M.1
  • 33
    • 28244500557 scopus 로고    scopus 로고
    • Prediction of the end depth ratio and discharge in semi circular and circular shaped channels using support vector machines
    • Pal M., Goel A. Prediction of the end depth ratio and discharge in semi circular and circular shaped channels using support vector machines. Flow Measure Instrum 2006, 17:50-57.
    • (2006) Flow Measure Instrum , vol.17 , pp. 50-57
    • Pal, M.1    Goel, A.2
  • 34
    • 78349308961 scopus 로고    scopus 로고
    • Support vector classifiers for land cover classification. Map India 2003, New Delhi, 28-31 January;
    • Pal M, Mather PM. Support vector classifiers for land cover classification. Map India 2003, New Delhi, 28-31 January; 2003. <>http://www.gisdevelopment.net/technology/rs/pdf/23.pdf.
    • (2003)
    • Pal, M.1    Mather, P.M.2
  • 35
    • 24144465874 scopus 로고    scopus 로고
    • Analysis of some methods for reduced rank Gaussian process regression. In: Murray-Smith R, Shorten R, editors. Switching and learning in feedback systems. Lecture notes in computer science,
    • Qüinonero-Candela J, Rasmussen CE. Analysis of some methods for reduced rank Gaussian process regression. In: Murray-Smith R, Shorten R, editors. Switching and learning in feedback systems. Lecture notes in computer science, vol. 3355; 2005.
    • (2005) , vol.3355
    • Qüinonero-Candela, J.1    Rasmussen, C.E.2
  • 36
    • 78349304117 scopus 로고
    • Capacity of piles driven into dense sand. Rep. Soils TR 171. Cambridge, UK: Engrg Dept, Cambridge University;
    • Randolph MF. Capacity of piles driven into dense sand. Rep. Soils TR 171. Cambridge, UK: Engrg Dept, Cambridge University; 1985.
    • (1985)
    • Randolph, M.F.1
  • 38
    • 78349307995 scopus 로고    scopus 로고
    • Fast forward selection to speed up sparse Gaussian process regression. In: Bishop CM, Frey BJ, editors. Proceedings of the ninth international workshop on artificial intelligence and statistics;
    • Seeger M, Williams CKI, Lawrence ND. Fast forward selection to speed up sparse Gaussian process regression. In: Bishop CM, Frey BJ, editors. Proceedings of the ninth international workshop on artificial intelligence and statistics; 2003.
    • (2003)
    • Seeger, M.1    Williams, C.K.I.2    Lawrence, N.D.3
  • 39
    • 78349313346 scopus 로고    scopus 로고
    • Regression estimation with support vector learning machines. Master's Thesis. Technische Universität München, Germany;
    • Smola AJ. Regression estimation with support vector learning machines. Master's Thesis. Technische Universität München, Germany; 1996.
    • (1996)
    • Smola, A.J.1
  • 41
    • 33644845063 scopus 로고    scopus 로고
    • Facilitating the application of support vector regression by using a universal Pearson VII function based kernel
    • Üstün B., Melssen W.J., Buydens L.M.C. Facilitating the application of support vector regression by using a universal Pearson VII function based kernel. Chemometr Intell Lab Syst 2006, 81:29-40.
    • (2006) Chemometr Intell Lab Syst , vol.81 , pp. 29-40
    • Üstün, B.1    Melssen, W.J.2    Buydens, L.M.C.3
  • 43
    • 0342851844 scopus 로고
    • The iron wharf at Fort Monroe, Va
    • Wellington A.M. The iron wharf at Fort Monroe, Va. Trans, ASCE 1892, 27:29-137.
    • (1892) Trans, ASCE , vol.27 , pp. 29-137
    • Wellington, A.M.1
  • 44
    • 35348905110 scopus 로고    scopus 로고
    • Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression
    • Yuan J., Wang K., Yu T., Fang M. Reliable multi-objective optimization of high-speed WEDM process based on Gaussian process regression. Int J Mach Tools Manuf 2008, 48:47-60.
    • (2008) Int J Mach Tools Manuf , vol.48 , pp. 47-60
    • Yuan, J.1    Wang, K.2    Yu, T.3    Fang, M.4
  • 45
    • 36248944066 scopus 로고    scopus 로고
    • Evolutionary support vector machine and its application in remote sensing imagery classification. Geoinformatics 2007: remotely sensed data and information. In: Ju Weimin, Zhao Shuhe, editors. Proceedings of the SPIE,
    • Yan G, Lishan K, Fujiang L, Linlu M. Evolutionary support vector machine and its application in remote sensing imagery classification. Geoinformatics 2007: remotely sensed data and information. In: Ju Weimin, Zhao Shuhe, editors. Proceedings of the SPIE, vol. 6752; 2007. p. 67523D.
    • (2007) , vol.6752 , pp. 67523
    • Yan, G.1    Lishan, K.2    Fujiang, L.3    Linlu, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.