-
1
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, no. 2, pp. 111-126, 1994.
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
2
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
October
-
D. D. Lee and H. S. Seung, "Learning the parts of objects by nonnegative matrix factorization." Nature, vol. 401, no. 6755, pp. 788-791, October 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
7
-
-
51449111646
-
Bayesian extensions to nonnegative matrix factorisation for audio signal modelling
-
T. O. Virtanen, A. T. Cemgil, and S. J. Godsill, "Bayesian extensions to nonnegative matrix factorisation for audio signal modelling," in Proc. of IEEE ICASSP 08, 2008.
-
(2008)
Proc. of IEEE ICASSP 08
-
-
Virtanen, T.O.1
Cemgil, A.T.2
Godsill, S.J.3
-
9
-
-
67149090611
-
Bayesian non-negative matrix factorization
-
Springer
-
M. N. Schmidt, O. Winther, and L. K. Hansen, "Bayesian non-negative matrix factorization," in ICA '09: Proc. of the 8th International Conference on Independent Component Analysis and Signal Separation. Springer, 2009, pp. 540-547.
-
(2009)
ICA '09: Proc. of the 8th International Conference on Independent Component Analysis and Signal Separation
, pp. 540-547
-
-
Schmidt, M.N.1
Winther, O.2
Hansen, L.K.3
-
13
-
-
67149144290
-
Minimum determinant constraint for non-negative matrix factorization
-
Springer
-
R. Schachtner, G. Pöppel, A. M. Tomé, and E. W. Lang, "Minimum determinant constraint for non-negative matrix factorization," in ICA '09: Proc. of the 8th International Conference on Independent Component Analysis and Signal Separation. Springer, 2009, pp. 106-113.
-
(2009)
ICA '09: Proc. of the 8th International Conference on Independent Component Analysis and Signal Separation
, pp. 106-113
-
-
Schachtner, R.1
Pöppel, G.2
Tomé, A.M.3
Lang, E.W.4
-
14
-
-
0033225865
-
An introduction to variational methods for graphical methods
-
MIT Press
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical methods," in Machine Learning. MIT Press, 1998, pp. 183-233.
-
(1998)
Machine Learning
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
16
-
-
84898964031
-
A variational Bayesian framework for graphical models
-
MIT Press
-
H. Attias, "A variational bayesian framework for graphical models," in In Advances in Neural Information Processing Systems 12. MIT Press, 2000, pp. 209-215.
-
(2000)
Advances in Neural Information Processing Systems 12
, pp. 209-215
-
-
Attias, H.1
-
18
-
-
33750512942
-
Variational learning for rectified factor analysis
-
M. Harva and A. Kabán, "Variational learning for rectified factor analysis," Signal Processing, vol. 87, no. 3, pp. 509-527, 2007.
-
(2007)
Signal Processing
, vol.87
, Issue.3
, pp. 509-527
-
-
Harva, M.1
Kabán, A.2
-
19
-
-
44649150208
-
Factorisation and denoising of 0-1 data: A variational approach
-
A. Kabán and E. Bingham, "Factorisation and denoising of 0-1 data: A variational approach," Neurocomputing, vol. 71, no. 10-12, pp. 2291-2308, 2008.
-
(2008)
Neurocomputing
, vol.71
, Issue.10-12
, pp. 2291-2308
-
-
Kabán, A.1
Bingham, E.2
-
21
-
-
0001025418
-
Bayesian interpolation
-
D. J. C. MacKay, "Bayesian interpolation," Neural Computation, vol. 4, no. 3, pp. 415-447, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.J.C.1
-
22
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
-, "Probable networks and plausible predictions - a review of practical Bayesian methods for supervised neural networks," Network: Computation in Neural Systems, vol. 6, pp. 469-505, 1995.
-
(1995)
Network: Computation in Neural Systems
, vol.6
, pp. 469-505
-
-
|