메뉴 건너뛰기




Volumn 71, Issue 10-12, 2008, Pages 2291-2308

Factorisation and denoising of 0-1 data: A variational approach

Author keywords

0 1 data; Data denoising; Factor models

Indexed keywords

COMPUTER SIMULATION; FACTORIZATION; PROBABILITY; SPURIOUS SIGNAL NOISE;

EID: 44649150208     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.07.038     Document Type: Article
Times cited : (29)

References (28)
  • 1
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • Solla S., Leen T., and Müller K.R. (Eds), MIT Press, Cambridge, MA, USA
    • Attias H. A variational Bayesian framework for graphical models. In: Solla S., Leen T., and Müller K.R. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge, MA, USA 209-215
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 2
    • 33750511893 scopus 로고    scopus 로고
    • Variational Bayesian learning of directed graphical models with hidden variables
    • Beal M.J., and Ghahramani Z. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Stat. 1 4 (2006)
    • (2006) Bayesian Stat. , vol.1 , Issue.4
    • Beal, M.J.1    Ghahramani, Z.2
  • 3
    • 0041419360 scopus 로고    scopus 로고
    • The mixture transition distribution model for high-order Markov chains and non-Gaussian time-series
    • Berchtold A., and Raftery A. The mixture transition distribution model for high-order Markov chains and non-Gaussian time-series. Stat. Sci. 17 3 (2002) 328-356
    • (2002) Stat. Sci. , vol.17 , Issue.3 , pp. 328-356
    • Berchtold, A.1    Raftery, A.2
  • 8
    • 33749404807 scopus 로고    scopus 로고
    • Blind deconvolution of multi-input single-output systems with binary sources
    • Diamantaras K.I., and Papadimitriou T. Blind deconvolution of multi-input single-output systems with binary sources. IEEE Trans. Signal Process. 54 10 (2006) 3720-3731
    • (2006) IEEE Trans. Signal Process. , vol.54 , Issue.10 , pp. 3720-3731
    • Diamantaras, K.I.1    Papadimitriou, T.2
  • 9
    • 44649092409 scopus 로고    scopus 로고
    • T. Fawcett, ROC graphs: notes and practical considerations for researchers, Technical Report, HP Laboratories, MS 1143, Palo Alto CA, USA, April 2004.
    • T. Fawcett, ROC graphs: notes and practical considerations for researchers, Technical Report, HP Laboratories, MS 1143, Palo Alto CA, USA, April 2004.
  • 10
    • 34247111980 scopus 로고    scopus 로고
    • Model-based clustering for social networks
    • Handcock M.S., and Raftery A.E. Model-based clustering for social networks. J. R. Stat. Soc. A 170 Part 2 (2007) 1-22
    • (2007) J. R. Stat. Soc. A , vol.170 , Issue.PART 2 , pp. 1-22
    • Handcock, M.S.1    Raftery, A.E.2
  • 11
    • 44649127110 scopus 로고    scopus 로고
    • J. Himberg, A. Hyvärinen, Independent component analysis for binary data: an experimental study, in: Proceedings of the ICA2001, 2001, pp. 552-556.
    • J. Himberg, A. Hyvärinen, Independent component analysis for binary data: an experimental study, in: Proceedings of the ICA2001, 2001, pp. 552-556.
  • 13
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M. (Ed), MIT Press, Cambridge, MA, USA
    • Jordan M., Ghahramani Z., Jaakkola T., and Saul L. An introduction to variational methods for graphical models. In: Jordan M. (Ed). Learning in Graphical Models (1999), MIT Press, Cambridge, MA, USA 105-161
    • (1999) Learning in Graphical Models , pp. 105-161
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 15
    • 33745711564 scopus 로고    scopus 로고
    • A. Kabán, E. Bingham, ICA-based binary feature construction, in: Proceedings of the 6th International Conference on Independent Component Analysis and Blind Source Separation (ICA06), Lecture Notes in Computer Science, vol. 3889, Springer, Berlin, 2006, pp. 140-148.
    • A. Kabán, E. Bingham, ICA-based binary feature construction, in: Proceedings of the 6th International Conference on Independent Component Analysis and Blind Source Separation (ICA06), Lecture Notes in Computer Science, vol. 3889, Springer, Berlin, 2006, pp. 140-148.
  • 16
    • 33750325168 scopus 로고    scopus 로고
    • A. Kabán, X. Wang, Deconvolutive clustering of Markov states, in: Proceedings of the ECML'06, 2006, pp. 246-257.
    • A. Kabán, X. Wang, Deconvolutive clustering of Markov states, in: Proceedings of the ECML'06, 2006, pp. 246-257.
  • 17
    • 44649089771 scopus 로고    scopus 로고
    • H. Lappalainen, Ensemble learning for independent component analysis, in: Proceedings of the International Workshop on Independent Component Analysis and Signal Separation (ICA'99), Aussois, France, 1999, pp. 7-12.
    • H. Lappalainen, Ensemble learning for independent component analysis, in: Proceedings of the International Workshop on Independent Component Analysis and Signal Separation (ICA'99), Aussois, France, 1999, pp. 7-12.
  • 23
    • 44649111609 scopus 로고    scopus 로고
    • M. Rees, from 'research quotes' 〈http://www.c2i.ntu.edu.sg/AI+CI/Humor/researchquotes.html〉.
    • M. Rees, from 'research quotes' 〈http://www.c2i.ntu.edu.sg/AI+CI/Humor/researchquotes.html〉.
  • 24
    • 0003040479 scopus 로고
    • A multiple cause model for unsupervised learning
    • Saund E. A multiple cause model for unsupervised learning. Neural Comput. 7 (1995) 51-71
    • (1995) Neural Comput. , vol.7 , pp. 51-71
    • Saund, E.1
  • 25
    • 33750257091 scopus 로고    scopus 로고
    • Noisy-OR component analysis and its application to link analysis
    • Singliar T., and Hauskrecht M. Noisy-OR component analysis and its application to link analysis. J. Mach. Learn. Res. 7 (2006) 2189-2213
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2189-2213
    • Singliar, T.1    Hauskrecht, M.2
  • 27
    • 84899007505 scopus 로고    scopus 로고
    • Probabilistic visualisation of high dimensional data
    • Tipping M.E. Probabilistic visualisation of high dimensional data. Adv. Neural Inf. Process. Syst. (1999) 592-598
    • (1999) Adv. Neural Inf. Process. Syst. , pp. 592-598
    • Tipping, M.E.1
  • 28
    • 0035989814 scopus 로고    scopus 로고
    • Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints
    • Wilbur J.D., Ghosh J.K., Nakatsu C.H., Brouder S.M., and Doerge R.W. Variable selection in high-dimensional multivariate binary data with application to the analysis of microbial community DNA fingerprints. Biometrics 58 (2002) 378-386
    • (2002) Biometrics , vol.58 , pp. 378-386
    • Wilbur, J.D.1    Ghosh, J.K.2    Nakatsu, C.H.3    Brouder, S.M.4    Doerge, R.W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.