메뉴 건너뛰기




Volumn , Issue , 2003, Pages 187-194

OP-cluster: Clustering by tendency in high dimensional space

Author keywords

[No Author keywords available]

Indexed keywords


EID: 78149310670     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (158)

References (21)
  • 4
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • C. C. Aggarwal and P. S. Yu. Finding generalized projected clusters in high dimensional spaces. In SIGMOD, pages 70-81, 2000.
    • (2000) SIGMOD , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 5
    • 0029212693 scopus 로고
    • Mining sequential patterns
    • 3-14, Mar.
    • R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, 3-14, Mar. 1995.
    • (1995) ICDE
    • Agrawal, R.1    Srikant, R.2
  • 6
    • 0032090765 scopus 로고    scopus 로고
    • Authomatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Authomatic subspace clustering of high dimensional data for data mining applications. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 7
    • 0036375743 scopus 로고    scopus 로고
    • Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem
    • A. Ben-Dor, B. Chor, R.Karp, and ZYakhini. Discovering Local Structure in Gene Expression Data: The Order-Preserving Submatrix Problem. In RECOMB 2002.
    • (2002) RECOMB
    • Ben-Dor, A.1    Chor, B.2    Karp, R.3    Yakhini, Z.4
  • 9
    • 0002646822 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data
    • C. H. Cheng, A. W Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In SIGKDD, pages 84-93, 1999.
    • (1999) SIGKDD , pp. 84-93
    • Cheng, C.H.1    Fu, A.W.2    Zhang, Y.3
  • 11
    • 85170282443 scopus 로고    scopus 로고
    • A density-bsed algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-bsed algorithm for discovering clusters in large spatial databases with noise. In SIGKDD, pages 226-231, 1996.
    • (1996) SIGKDD , pp. 226-231
    • Ester, M.1    Kriegel, H.2    Sander, J.3    Xu, X.4
  • 12
    • 0002928691 scopus 로고    scopus 로고
    • Semantic compression and pttern extraction with fasicicles
    • H.V.Jagadish, J.Madar, and R. Ng. Semantic compression and pttern extraction with fasicicles. In VLDB, pages 186-196, 1999.
    • (1999) VLDB , pp. 186-196
    • Jagadish, H.V.1    Madar, J.2    Ng, R.3
  • 14
    • 0035016443 scopus 로고    scopus 로고
    • PrefixSpan mining sequential patterns e.ciently by prefix projected pattern growth
    • Apr.
    • J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen U. Dayal, and M.-C. Hsu. PrefixSpan mining sequential patterns e.ciently by prefix projected pattern growth. In ICDE 2001, pages 215-226, Apr. 2001.
    • (2001) ICDE 2001 , pp. 215-226
    • Pei, J.1    Han, J.2    Mortazavi-Asl, B.3    Pinto, H.4    Chen, Q.5    Dayal, U.6    Hsu, M.-C.7
  • 15
    • 84897708583 scopus 로고    scopus 로고
    • Mining sequential patterns: Generalizations and performance improvements
    • Mar.
    • R.Srikant and RAgrawal. Mining sequential patterns: Generalizations and performance improvements. In EDBT'96, pages 3-17, Mar. 1996.
    • (1996) EDBT'96 , pp. 3-17
    • Srikant, R.1    Agrawal, R.2
  • 17
    • 0036372484 scopus 로고    scopus 로고
    • Clustering by pattern similarity in large data sets
    • H. Wang, W. Wang, J. Yang, and P. Yu. Clustering by pattern similarity in large data sets, in SIGMOD, pp. 394-405, 2002.
    • (2002) SIGMOD , pp. 394-405
    • Wang, H.1    Wang, W.2    Yang, J.3    Yu, P.4
  • 18
    • 0036211103 scopus 로고    scopus 로고
    • δ-clusters: Capturing subspace correlation in a large data set
    • J. Yang, W. Wang, H. Wang, and P. S. Yu. δ-clusters: Capturing subspace correlation in a large data set. In ICDE, pages 517-528, 2002.
    • (2002) ICDE , pp. 517-528
    • Yang, J.1    Wang, W.2    Wang, H.3    Yu, P.S.4
  • 19
    • 0036373130 scopus 로고    scopus 로고
    • Mining long sequential patterns in a noisy environment
    • J. Yang, W. Wang, P. Yu, and J. Han. Mining long sequential patterns in a noisy environment. In SIGMOD,pp.406-417, 2002.
    • (2002) SIGMOD , pp. 406-417
    • Yang, J.1    Wang, W.2    Yu, P.3    Han, J.4
  • 20
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for very large databases. In SIGMOD, pages 103114, 1996.
    • (1996) SIGMOD , pp. 103114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 21
    • 21944439686 scopus 로고    scopus 로고
    • Parallel algorithm for discovery of association rules
    • M. J. Zaki, S. Parthasarathy, M.Orihara, and W. Li. Parallel algorithm for discovery of association rules. In DMKD, 343-374, 1997.
    • (1997) DMKD , pp. 343-374
    • Zaki, M.J.1    Parthasarathy, S.2    Orihara, M.3    Li, W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.