-
4
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
September
-
B. Schölkopf, S. Mika, C.J.C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A.J. Smola. Input space versus feature space in kernel-based methods. IEEE transactions on neural networks, 10(5):1000-1017, September 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.J.7
-
5
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural computation, 10:1299-1319, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.J.2
Müller, K.-R.3
-
6
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
E.Wilson J.Larsen and S.Douglas, editors, IEEE
-
S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis with kernels. In E.Wilson J.Larsen and S.Douglas, editors, Neural networks for signal processing IX, pages 41-48. IEEE, 1999.
-
(1999)
Neural Networks for Signal Processing
, vol.9
, pp. 41-48
-
-
Mika, S.1
Rätsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.-R.5
-
7
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural computation, 12:2385-2404, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
9
-
-
0036195207
-
Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm
-
S.A. Billings and K.L. Lee. Nonlinear fisher discriminant analysis using a minimum squared error cost function and the orthogonal least squares algorithm. Neural networks, 15(2):263-270, 2002.
-
(2002)
Neural Networks
, vol.15
, Issue.2
, pp. 263-270
-
-
Billings, S.A.1
Lee, K.L.2
-
10
-
-
4043176922
-
Lower dimensional representation of text data based on centroids and least squares
-
H. Park, M. Jeon, and J.B. Rosen. Lower dimensional representation of text data based on centroids and least squares. BIT Numerical Mathematics, 43(2):1-22, 2003.
-
(2003)
BIT Numerical Mathematics
, vol.43
, Issue.2
, pp. 1-22
-
-
Park, H.1
Jeon, M.2
Rosen, J.B.3
-
14
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
16
-
-
0141465877
-
Making large-scale svm learning practical
-
Universitat Dortmund, LS VIII-Report
-
T.Joachims. Making large-scale svm learning practical. LS8-Report 24, Universitat Dortmund, LS VIIIReport, 1998.
-
(1998)
LS8-Report
, vol.24
-
-
Joachims, T.1
-
17
-
-
78149311996
-
-
http://www.ics.uci.edu/~mlearn/MLRepository.html
-
-
-
-
18
-
-
84899018574
-
Invariant feature extraction and classification in kernel spaces
-
S. Mika, G. Ratsch, J. Weston, B. Schölkopf, A.J. Smola, and K.-R. Müller. Invariant feature extraction and classification in kernel spaces. Advances in neural information processing systems, 12:526-532, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 526-532
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Schölkopf, B.4
Smola, A.J.5
Müller, K.-R.6
|