메뉴 건너뛰기




Volumn 32, Issue 11, 2010, Pages 1977-1993

An a-contrario approach for subpixel change detection in satellite imagery

Author keywords

a contrario modeling; Change detection; image series; mixture model; significance test; subpixel

Indexed keywords

A-CONTRARIO MODELING; CHANGE DETECTION; IMAGE SERIES; MIXTURE MODEL; SIGNIFICANCE TEST; SUB PIXELS;

EID: 78149285319     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2010.37     Document Type: Article
Times cited : (77)

References (42)
  • 1
    • 0037243887 scopus 로고    scopus 로고
    • A test statistic in the complex wishart distribution and its application to change detection in polarimetric sar data
    • Jan.
    • K. Conradsen, A. Nielsen, J. Schou, and H. Skriver, "A Test Statistic in the Complex Wishart Distribution and Its Application to Change Detection in Polarimetric Sar Data," IEEE Trans. Geoscience and Remote Sensing, vol. 41, no. 1, pp. 4-19, Jan. 2003.
    • (2003) IEEE Trans. Geoscience and Remote Sensing , vol.41 , Issue.1 , pp. 4-19
    • Conradsen, K.1    Nielsen, A.2    Schou, J.3    Skriver, H.4
  • 2
    • 0036543746 scopus 로고    scopus 로고
    • An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images
    • Apr.
    • L. Bruzzone and D. Prieto, "An Adaptive Semiparametric and Context-Based Approach to Unsupervised Change Detection in Multitemporal Remote-Sensing Images," IEEE Trans. Image Processing, vol. 11, no. 4, pp. 452-466, Apr. 2002.
    • (2002) IEEE Trans. Image Processing , vol.11 , Issue.4 , pp. 452-466
    • Bruzzone, L.1    Prieto, D.2
  • 3
    • 0142106326 scopus 로고    scopus 로고
    • Automatic change detection in multimodal serial mri: Application to multiple sclerosis lesion evolution
    • M. Bosc, F. Heitz, J. Armspach, I. Namer, D. Gounot, and L. Rumbach, "Automatic Change Detection in Multimodal Serial MRI: Application to Multiple Sclerosis Lesion Evolution," Neuro-image, vol. 20, pp. 643-656, 2003.
    • (2003) Neuro-image , vol.20 , pp. 643-656
    • Bosc, M.1    Heitz, F.2    Armspach, J.3    Namer, I.4    Gounot, D.5    Rumbach, L.6
  • 4
    • 0036624489 scopus 로고    scopus 로고
    • Automatic detection and segmentation of evolving processes in 3d medical images: Application to multiple sclerosis
    • June
    • D. Rey, G. Subsol, H. Delingette, and N. Ayache, "Automatic Detection and Segmentation of Evolving Processes in 3D Medical Images: Application to Multiple Sclerosis," Medical Image Analysis, vol. 6, no. 2, pp. 163-179, June 2002.
    • (2002) Medical Image Analysis , vol.6 , Issue.2 , pp. 163-179
    • Rey, D.1    Subsol, G.2    Delingette, H.3    Ayache, N.4
  • 8
    • 2942709974 scopus 로고    scopus 로고
    • Automatic change detection by evidential fusion of change indices
    • S. Le Hégarat-Mascle and R. Seltz, "Automatic Change Detection by Evidential Fusion of Change Indices," Remote Sensing of Environment, vol. 91, pp. 390-404, 2004.
    • (2004) Remote Sensing of Environment , vol.91 , pp. 390-404
    • Le Hégarat-Mascle, S.1    Seltz, R.2
  • 9
    • 33846223394 scopus 로고    scopus 로고
    • A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain
    • Jan.
    • F. Bovolo and L. Bruzzone, "A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in the Polar Domain," IEEE Trans. Geoscience and Remote Sensing, vol. 45, no. 1, pp. 218-236, Jan. 2007.
    • (2007) IEEE Trans. Geoscience and Remote Sensing , vol.45 , Issue.1 , pp. 218-236
    • Bovolo, F.1    Bruzzone, L.2
  • 10
    • 0033707763 scopus 로고    scopus 로고
    • Automatic analysis of the difference image for unsupervised change detection
    • May
    • L. Bruzzone and D. Prieto, "Automatic Analysis of the Difference Image for Unsupervised Change Detection," IEEE Trans. Geoscience and Remote Sensing, vol. 38, no. 3, pp. 1171-1182, May 2000.
    • (2000) IEEE Trans. Geoscience and Remote Sensing , vol.38 , Issue.3 , pp. 1171-1182
    • Bruzzone, L.1    Prieto, D.2
  • 11
    • 0018922936 scopus 로고
    • Change vector analysis: An approach for detecting forest changes with landsat
    • W. Malila, "Change Vector Analysis: An Approach for Detecting Forest Changes with Landsat," Proc. Ann. Symp. Machine Processing of Remotely Sensed Data, pp. 326-335, 1980.
    • (1980) Proc. Ann. Symp. Machine Processing of Remotely Sensed Data , pp. 326-335
    • Malila, W.1
  • 12
    • 0037371011 scopus 로고    scopus 로고
    • Change detection in overhead imagery using neural networks
    • C. Clifton, "Change Detection in Overhead Imagery Using Neural Networks," Applied Intelligence, vol. 18, pp. 215-234, 2003.
    • (2003) Applied Intelligence , vol.18 , pp. 215-234
    • Clifton, C.1
  • 13
    • 0026156606 scopus 로고
    • Adaptative algorithms for change detection in image sequence
    • A. Elfishawy, S. Kesler, and A. Abutaleb, "Adaptative Algorithms for Change Detection in Image Sequence," Signal Processing, vol. 23, no. 2, pp. 179-191, 1991.
    • (1991) Signal Processing , vol.23 , Issue.2 , pp. 179-191
    • Elfishawy, A.1    Kesler, S.2    Abutaleb, A.3
  • 14
    • 0036699475 scopus 로고    scopus 로고
    • An image change detection algorithm based on markov random field models
    • Aug.
    • T. Kasetkasem and P. Varshney, "An Image Change Detection Algorithm Based on Markov Random Field Models," IEEE Trans. Geoscience and Remote Sensing, vol. 40, no. 8, pp. 1815-1823, Aug. 2002.
    • (2002) IEEE Trans. Geoscience and Remote Sensing , vol.40 , Issue.8 , pp. 1815-1823
    • Kasetkasem, T.1    Varshney, P.2
  • 15
    • 0343963059 scopus 로고    scopus 로고
    • An adaptative parcel-based technique for unsupervised change detection
    • L. Bruzzone and D. Prieto, "An Adaptative Parcel-Based Technique for Unsupervised Change Detection," Int'l J. Remote Sensing, vol. 21, no. 4, pp. 817-822, 2000.
    • (2000) Int'l J. Remote Sensing , vol.21 , Issue.4 , pp. 817-822
    • Bruzzone, L.1    Prieto, D.2
  • 16
    • 33847695328 scopus 로고    scopus 로고
    • A context-sensitive technique for unsupervised change detection based on hopfield-type neural networks
    • Mar.
    • S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, and A. Ghosh, "A Context-Sensitive Technique for Unsupervised Change Detection Based on Hopfield-Type Neural Networks," IEEE Trans. Geoscience and Remote Sensing, vol. 45, no. 3, pp. 778-788, Mar. 2007.
    • (2007) IEEE Trans. Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 778-788
    • Ghosh, S.1    Bruzzone, L.2    Patra, S.3    Bovolo, F.4    Ghosh, A.5
  • 17
    • 14844339425 scopus 로고    scopus 로고
    • Image change detection algorithms: A systematic survey
    • Mar.
    • R. Radke, S. Andra, O. Al Kohafi, and B. Roysam, "Image Change Detection Algorithms: A Systematic Survey," IEEE Trans. Image Processing, vol. 14, no. 3, pp. 294-307, Mar. 2005.
    • (2005) IEEE Trans. Image Processing , vol.14 , Issue.3 , pp. 294-307
    • Radke, R.1    Andra, S.2    Al Kohafi, O.3    Roysam, B.4
  • 18
    • 0036986484 scopus 로고    scopus 로고
    • Unsupervised change detection methods for remote sensing images
    • F. Melgani, G. Moser, and S. Serpico, "Unsupervised Change Detection Methods for Remote Sensing Images," Optical Eng., vol. 41, no. 12, pp. 81-90, 2002.
    • (2002) Optical Eng. , vol.41 , Issue.12 , pp. 81-90
    • Melgani, F.1    Moser, G.2    Serpico, S.3
  • 19
    • 33646042731 scopus 로고
    • Detection of intensity changes with subpixel accuracy using laplacian-gaussian masks
    • Sept.
    • A. Huertas and G. Medioni, "Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 8, no. 5, pp. 651-664, Sept. 1986.
    • (1986) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.8 , Issue.5 , pp. 651-664
    • Huertas, A.1    Medioni, G.2
  • 20
    • 0042922539 scopus 로고    scopus 로고
    • Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data
    • L. Yang, G. Xian, J.M. Klaver, and B. Deal, "Urban Land-Cover Change Detection through Sub-Pixel Imperviousness Mapping Using Remotely Sensed Data," Photogrammetric Eng. and Remote Sensing, vol. 69, no. 9, pp. 1003-1010, 2003.
    • (2003) Photogrammetric Eng. and Remote Sensing , vol.69 , Issue.9 , pp. 1003-1010
    • Yang, L.1    Xian, G.2    Klaver, J.M.3    Deal, B.4
  • 21
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model: Analysis of hyperspectral image data
    • July
    • D. Manolakis, C. Siracusa, and G. Shaw, "Hyperspectral Subpixel Target Detection Using the Linear Mixing Model: Analysis of Hyperspectral Image Data," IEEE Trans. Geoscience and Remote Sensing, vol. 39, no. 7, pp. 1392-1409, July 2001.
    • (2001) IEEE Trans. Geoscience and Remote Sensing , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 22
    • 16444378415 scopus 로고    scopus 로고
    • Land cover change detection at coarse spatial scales based on iterative estimation and previous state information
    • S. Le Hégarat-Mascle, C. Ottlé, and C. Guérin, "Land Cover Change Detection at Coarse Spatial Scales Based on Iterative Estimation and Previous State Information," Remote Sensing of Environment, vol. 95, pp. 464-479, 2005.
    • (2005) Remote Sensing of Environment , vol.95 , pp. 464-479
    • Le Hégarat-Mascle, S.1    Ottlé, C.2    Guérin, C.3
  • 25
    • 3543099688 scopus 로고    scopus 로고
    • A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix
    • L. Moisan and B. Stival, "A Probabilistic Criterion to Detect Rigid Point Matches between Two Images and Estimate the Fundamental Matrix," Int'l J. Computer Vision, vol. 57, no. 3, pp. 201-218, 2004.
    • (2004) Int'l J. Computer Vision , vol.57 , Issue.3 , pp. 201-218
    • Moisan, L.1    Stival, B.2
  • 26
    • 78149285996 scopus 로고    scopus 로고
    • Image comparison and motion detection by a contrario methods
    • L. Harris and M. Jenkin, eds., Cambridge Univ. Press
    • F. Cao, T. Veit, and P. Bouthemy, "Image Comparison and Motion Detection by A Contrario Methods," Computational Vision in Neural and Machine Systems, L. Harris and M. Jenkin, eds., Cambridge Univ. Press, 2005.
    • (2005) Computational Vision in Neural and Machine Systems
    • Cao, F.1    Veit, T.2    Bouthemy, P.3
  • 27
    • 60449095768 scopus 로고    scopus 로고
    • A-contrario detectability of spots in textured backgrounds
    • B. Grosjean and L. Moisan, "A-Contrario Detectability of Spots in Textured Backgrounds," J. Math. Imaging and Vision, vol. 33, no. 3, pp. 313-337, 2009.
    • (2009) J. Math. Imaging and Vision , vol.33 , Issue.3 , pp. 313-337
    • Grosjean, B.1    Moisan, L.2
  • 31
    • 0242490488 scopus 로고    scopus 로고
    • Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data
    • H. Cardot, R. Faivre, and M. Goulard, "Functional Approaches for Predicting Land Use with the Temporal Evolution of Coarse Resolution Remote Sensing Data," J. Applied Statistics, vol. 30, pp. 1185-1199, 2003.
    • (2003) J. Applied Statistics , vol.30 , pp. 1185-1199
    • Cardot, H.1    Faivre, R.2    Goulard, M.3
  • 32
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • M. Fischler and R. Bolles, "Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," Comm. ACM, vol. 24, pp. 381-385, 1981.
    • (1981) Comm. ACM , vol.24 , pp. 381-385
    • Fischler, M.1    Bolles, R.2
  • 34
    • 0003543769 scopus 로고
    • Probabilités Analyse des Données et Statistique
    • G. Saporta, Probabilités, Analyse des Données et Statistique. TECH-NIP, 1990.
    • (1990) TECH-NIP
    • Saporta, G.1
  • 36
    • 33645762226 scopus 로고
    • A sharper bonferroni procedure for multiple tests of significance
    • Y. Hochberg, "A Sharper Bonferroni Procedure for Multiple Tests of Significance," Biometrika, vol. 75, pp. 800-803, 1988.
    • (1988) Biometrika , vol.75 , pp. 800-803
    • Hochberg, Y.1
  • 37
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini and Y. Hochberg, "Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing," J. Royal Statistical Soc., vol. 57, no. 1, pp. 289-300, 1995.
    • (1995) J. Royal Statistical Soc. , vol.57 , Issue.1 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 38
    • 0029388810 scopus 로고
    • A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry
    • Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, "A Robust Technique for Matching Two Uncalibrated Images through the Recovery of the Unknown Epipolar Geometry," Artificial Intelligence J., vol. 78, pp. 87-119, 1994.
    • (1994) Artificial Intelligence J. , vol.78 , pp. 87-119
    • Zhang, Z.1    Deriche, R.2    Faugeras, O.3    Luong, Q.-T.4
  • 39
    • 53349108926 scopus 로고    scopus 로고
    • Unsupervised subpixelic classification using coarse resolution time series and structural information
    • May
    • A. Robin, S. Le Hégarat-Mascle, and L. Moisan, "Unsupervised Subpixelic Classification Using Coarse Resolution Time Series and Structural Information," IEEE Trans. Geoscience and Remote Sensing, vol. 46, no. 5, pp. 1359-1374, May 2008.
    • (2008) IEEE Trans. Geoscience and Remote Sensing , vol.46 , Issue.5 , pp. 1359-1374
    • Robin, A.1    Le Hégarat-Mascle, S.2    Moisan, L.3
  • 40
    • 34247344495 scopus 로고    scopus 로고
    • Generalized minimum-error thresholding for unsupervised change detection from sar amplitude imagery
    • Oct.
    • G. Moser and S. Serpico, "Generalized Minimum-Error Thresholding for Unsupervised Change Detection from Sar Amplitude Imagery," IEEE Trans. Geoscience and Remote Sensing, vol. 44, no. 10, pp. 2972-2982, Oct. 2006.
    • (2006) IEEE Trans. Geoscience and Remote Sensing , vol.44 , Issue.10 , pp. 2972-2982
    • Moser, G.1    Serpico, S.2
  • 41
    • 0034521616 scopus 로고    scopus 로고
    • A minimum cost thresholding technique for unsupervised change detection
    • L. Bruzzone and D. Prieto, "A Minimum Cost Thresholding Technique for Unsupervised Change Detection," Int'l J. Remote Sensing, vol. 21, no. 18, pp. 3539-3544, 2000.
    • (2000) Int'l J. Remote Sensing , vol.21 , Issue.18 , pp. 3539-3544
    • Bruzzone, L.1    Prieto, D.2
  • 42
    • 0024163876 scopus 로고
    • The determination of optimal threshold levels for change detection using various accuracy indices
    • T. Fung and E. Le Drew, "The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices," Photogrammetric Eng. and Remote Sensing, vol. 54, no. 10, pp. 1449-1454, 1988.
    • (1988) Photogrammetric Eng. and Remote Sensing , vol.54 , Issue.10 , pp. 1449-1454
    • Fung, T.1    Le Drew, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.