메뉴 건너뛰기




Volumn 24, Issue 8, 2010, Pages 2985-2995

An online adaptive condition-based maintenance method for mechanical systems

Author keywords

Condition based maintenance; Machine tool; Self organizing map; Statistical pattern recognition

Indexed keywords

CALCULATION COST; CONDITION BASED MAINTENANCE; CONTINUOUS PROCESS; DISTANCE ANALYSIS; LEARNING CAPABILITIES; LEARNING PROCESS; LOCAL CLUSTER; MECHANICAL SYSTEMS; NEURAL NETWORK TECHNIQUES; PATTERN DISCOVERY; STATISTICAL PATTERN RECOGNITION;

EID: 78049451757     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2010.04.003     Document Type: Article
Times cited : (45)

References (24)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A.K.S. Jardine, D. Lin, and D. Banjevic A review on machinery diagnostics and prognostics implementing condition-based maintenance Mechanical Systems and Signal Processing 20 2006 1483 1510
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 4
    • 0345566447 scopus 로고    scopus 로고
    • Fault diagnosis using support vector machine with an application in sheet metal stamping operations
    • M. Ge, R. Du, G. Zhang, and Y. Xu Fault diagnosis using support vector machine with an application in sheet metal stamping operations Mechanical Systems and Signal Processing 18 2004 143 159
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 143-159
    • Ge, M.1    Du, R.2    Zhang, G.3    Xu, Y.4
  • 6
    • 34047251505 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs
    • DOI 10.1016/j.ymssp.2006.11.003, PII S0888327006002512
    • Y. Lei, Z. He, Y. Zi, and Q. Hu Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs Mechanical Systems and Signal Processing 21 2007 2280 2294 (Pubitemid 46550775)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.5 , pp. 2280-2294
    • Lei, Y.1    He, Z.2    Zi, Y.3    Hu, Q.4
  • 7
    • 0002475334 scopus 로고    scopus 로고
    • A survey of data mining and knowledge discovery software tools
    • M. Goebel, L. Gruenwald, A survey of data mining and knowledge discovery software tools, in: ACM SIGKDD, vol. 1, 1999, pp. 2033.
    • (1999) ACM SIGKDD , vol.1 , pp. 20-33
    • Goebel, M.1    Gruenwald, L.2
  • 8
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning
    • DOI 10.1109/3477.969494, PII S1083441901086411
    • N. Kasabov Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31 2001 902 918 (Pubitemid 34035554)
    • (2001) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.1
  • 10
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A reviewpart 2: Neural network based approaches
    • M. Markou, and S. Singh Novelty detection: a reviewpart 2: neural network based approaches Signal Processing 83 2003 2499 2521
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 11
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • T. Kohonen The self-organizing map Neurocomputing 21 1998 1 6
    • (1998) Neurocomputing , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 16
    • 28844433590 scopus 로고    scopus 로고
    • Modified self-organizing map for automated novelty detection applied to vibration signal monitoring
    • M.L.D. Wong, L.B. Jack, and A.K. Nandi Modified self-organizing map for automated novelty detection applied to vibration signal monitoring Mechanical Systems and Signal Processing 20 2006 593 610
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 593-610
    • Wong, M.L.D.1    Jack, L.B.2    Nandi, A.K.3
  • 19
    • 84943228749 scopus 로고
    • Incremental grid growing: Encoding high-dimensional structure into a two-dimensional feature map
    • San Francisco, CA, USA
    • J. Blackmore, R. Miikkulainen, Incremental grid growing: encoding high-dimensional structure into a two-dimensional feature map, in: IEEE International Conference on Neural Networks, vol. 1, San Francisco, CA, USA, 1993, pp. 450455.
    • (1993) IEEE International Conference on Neural Networks , vol.1 , pp. 450-455
    • Blackmore, J.1    Miikkulainen, R.2
  • 20
    • 33750126257 scopus 로고
    • Growing grida self-organizing network with constant neighborhood range and adaptation strength
    • B. Fritzke Growing grida self-organizing network with constant neighborhood range and adaptation strength Neural Processing Letters 2 1995 9 13
    • (1995) Neural Processing Letters , vol.2 , pp. 9-13
    • Fritzke, B.1
  • 21
    • 0037382210 scopus 로고    scopus 로고
    • On-line pattern analysis by evolving self-organizing maps
    • D. Deng, and N. Kasabov On-line pattern analysis by evolving self-organizing maps Neurocomputing 51 2003 87 103
    • (2003) Neurocomputing , vol.51 , pp. 87-103
    • Deng, D.1    Kasabov, N.2
  • 22
    • 0028748949 scopus 로고
    • Growing cell structures-a selforganizing network for unsupervised and supervised learning
    • B. Fritzke Growing cell structures-a selforganizing network for unsupervised and supervised learning Neural Networks 7 1994 1441 1460
    • (1994) Neural Networks , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 23
    • 5044247101 scopus 로고    scopus 로고
    • Watchdog agentan infotronics-based prognostics approach for product performance degradation assessment and prediction
    • D. Djurdjanovic, J. Lee, and J. Ni Watchdog agentan infotronics-based prognostics approach for product performance degradation assessment and prediction Advanced Engineering Informatics 17 2003 109 125
    • (2003) Advanced Engineering Informatics , vol.17 , pp. 109-125
    • Djurdjanovic, D.1    Lee, J.2    Ni, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.