-
1
-
-
1442360753
-
-
Wiley-VCH: Weinheim, Germany, and references therein
-
Grubbs, R. H. Handbook of Metathesis; Wiley-VCH: Weinheim, Germany, 2003, and references therein.
-
(2003)
Handbook of Metathesis
-
-
Grubbs, R.H.1
-
3
-
-
22744448499
-
-
Nicolaou, K. C., Bulger, P. G., and Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 4490
-
-
Nicolaou, K.C.1
Bulger, P.G.2
Sarlah, D.3
-
6
-
-
78049357214
-
-
Fürstner, A., Ackermann, L., Gabor, B., Goddard, R., Lehmann, C. W., Mynott, R., Stelzer, f., and Theil, O. R. Chem.-Eur. J. 2001, 7, 323
-
(2001)
Chem.-Eur. J.
, vol.7
, pp. 323
-
-
Fürstner, A.1
Ackermann, L.2
Gabor, B.3
Goddard, R.4
Lehmann, C.W.5
Mynott, R.6
Stelzer, F.7
Theil, O.R.8
-
7
-
-
78049355607
-
-
For selected recent applications in synthesis, see
-
For selected recent applications in synthesis, see
-
-
-
-
10
-
-
45549096050
-
-
Shu, C., Zeng, X., Hao, M., Wei, X., Yee, N. K., Busacca, C. A., Han, Z., Farina, V., and Senanayake, C. H. Org. Lett. 2008, 10, 1303
-
(2008)
Org. Lett.
, vol.10
, pp. 1303
-
-
Shu, C.1
Zeng, X.2
Hao, M.3
Wei, X.4
Yee, N.K.5
Busacca, C.A.6
Han, Z.7
Farina, V.8
Senanayake, C.H.9
-
11
-
-
65349119947
-
-
Fürstner, A., Bouchez, L. C., Morency, L., Funel, J., Liepins, V., Porée, F., Gilmour, R., Laurich, D., Beaufils, F., and Tamiya, M. Chem.-Eur. J. 2009, 15, 3983
-
(2009)
Chem.-Eur. J.
, vol.15
, pp. 3983
-
-
Fürstner, A.1
Bouchez, L.C.2
Morency, L.3
Funel, J.4
Liepins, V.5
Porée, F.6
Gilmour, R.7
Laurich, D.8
Beaufils, F.9
Tamiya, M.10
-
12
-
-
77957577524
-
-
Monfette, S., Eyholzer, M., Roberge, D. M., and Fogg, D. E. Chem.-Eur. J. 2010, 16, 11720
-
(2010)
Chem.-Eur. J.
, vol.16
, pp. 11720
-
-
Monfette, S.1
Eyholzer, M.2
Roberge, D.M.3
Fogg, D.E.4
-
13
-
-
33751225665
-
-
For a review on metathesis of heteroatom-substituted olefins, see
-
For a review on metathesis of heteroatom-substituted olefins, see: Van de Weghe, P., Bisseret, P., Blanchard, N., and Eustache, J. J. Organomet. Chem. 2006, 691, 5078
-
(2006)
J. Organomet. Chem.
, vol.691
, pp. 5078
-
-
Van De Weghe, P.1
Bisseret, P.2
Blanchard, N.3
Eustache, J.4
-
15
-
-
4444286115
-
-
Chao, W., Meketa, M. L., and Weinreb, S. M. Synthesis 2004, 12, 2058
-
(2004)
Synthesis
, vol.12
, pp. 2058
-
-
Chao, W.1
Meketa, M.L.2
Weinreb, S.M.3
-
16
-
-
38349159026
-
-
White, D. E., Stewart, I. C., Grubbs, R. H., and Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 810
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 810
-
-
White, D.E.1
Stewart, I.C.2
Grubbs, R.H.3
Stoltz, B.M.4
-
17
-
-
77954243412
-
-
This paper indeed indicates that related structures to the one reported in ref 4c cannot be obtained via RCM of the corresponding alkenyl chloride substrates
-
White, D. E., Stewart, I. C., Seashore-Lodlow, B. A., Grubbs, R. H., and Stoltz, B. M. Tetrahedron 2010, 66, 4668 This paper indeed indicates that related structures to the one reported in ref 4c cannot be obtained via RCM of the corresponding alkenyl chloride substrates
-
(2010)
Tetrahedron
, vol.66
, pp. 4668
-
-
White, D.E.1
Stewart, I.C.2
Seashore-Lodlow, B.A.3
Grubbs, R.H.4
Stoltz, B.M.5
-
18
-
-
0001101871
-
-
For Grubbs II (GII), see ref 4 and b. For Schrock and Grubbs I (GI), see
-
For Grubbs II (GII), see ref 4 and b. For Schrock and Grubbs I (GI), see: Kirkland, T. A. and Grubbs, R. H. J. Org. Chem. 1997, 62, 7310
-
(1997)
J. Org. Chem.
, vol.62
, pp. 7310
-
-
Kirkland, T.A.1
Grubbs, R.H.2
-
19
-
-
78049412167
-
-
For recent efforts to use alkenyl halides in CM, see
-
For recent efforts to use alkenyl halides in CM, see
-
-
-
-
20
-
-
44049102131
-
-
Sashuk, V., Samojlowicz, C., Szadkowska, A., and Grela, K. Chem. Commun. 2008, 2468
-
(2008)
Chem. Commun.
, pp. 2468
-
-
Sashuk, V.1
Samojlowicz, C.2
Szadkowska, A.3
Grela, K.4
-
21
-
-
66149131397
-
-
Macnaughtan, M. L., Gary, J. B., Gerlach, D. L., Johnson, M. J. A., and Kampf, J. W. Organometallics 2009, 28, 2880
-
(2009)
Organometallics
, vol.28
, pp. 2880
-
-
MacNaughtan, M.L.1
Gary, J.B.2
Gerlach, D.L.3
Johnson, M.J.A.4
Kampf, J.W.5
-
22
-
-
78049369357
-
-
See the Supporting Information for details
-
See the Supporting Information for details.
-
-
-
-
23
-
-
78049396602
-
-
3 at the same concentration. See the Supporting Information for spectra
-
3 at the same concentration. See the Supporting Information for spectra.
-
-
-
-
24
-
-
78049404048
-
-
To our knowledge, this is the first example where a second-generation ruthenium catalyst decomposes via formal loss of the NHC ligand. For other decomposition pathways, see
-
To our knowledge, this is the first example where a second-generation ruthenium catalyst decomposes via formal loss of the NHC ligand. For other decomposition pathways, see
-
-
-
-
25
-
-
68949140962
-
-
Samojlowicz, C., Bieniek, M., and Grela, K. Chem. Rev. 2009, 109, 3708
-
(2009)
Chem. Rev.
, vol.109
, pp. 3708
-
-
Samojlowicz, C.1
Bieniek, M.2
Grela, K.3
-
27
-
-
34347267209
-
-
It is commonly assumed that alkenyl halides react very rapidly with the ruthenium center, giving rise to Fischer-type carbene moieties; see discussion in ref 4a and
-
It is commonly assumed that alkenyl halides react very rapidly with the ruthenium center, giving rise to Fischer-type carbene moieties; see discussion in ref 4a and: Macnaughtan, M. L., Johnson, M. J. A., and Kampf, J. W. J. Am. Chem. Soc. 2007, 129, 7708
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 7708
-
-
MacNaughtan, M.L.1
Johnson, M.J.A.2
Kampf, J.W.3
-
28
-
-
78049355606
-
-
In a separate experiment, we made sure that compound 2 does not react with an equimolar amount of tricyclohexylphosphine. This excludes a reaction scenario where the phosphine liberated from GII during the initial CM of 1 attacks the bromoalkene via elimination of HBr
-
In a separate experiment, we made sure that compound 2 does not react with an equimolar amount of tricyclohexylphosphine. This excludes a reaction scenario where the phosphine liberated from GII during the initial CM of 1 attacks the bromoalkene via elimination of HBr.
-
-
-
-
29
-
-
78049379054
-
-
Terminal substitution has been successfully used in the past to minimize unwanted secondary metathesis activity during RCM. For the first example, see
-
Terminal substitution has been successfully used in the past to minimize unwanted secondary metathesis activity during RCM. For the first example, see
-
-
-
-
30
-
-
0000587503
-
-
For more recent, selected examples where the geometry of a terminal phenyl or methyl group affects reaction yields, see:, J. Org. Chem. 1998, 63, 9904
-
Fu, G. C. and Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 7324 For more recent, selected examples where the geometry of a terminal phenyl or methyl group affects reaction yields, see: Kirkland, T. A., Lynn, D. M., and Grubbs, R. H. J. Org. Chem. 1998, 63, 9904
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 7324
-
-
Fu, G.C.1
Grubbs, R.H.2
Kirkland, T.A.3
Lynn, D.M.4
Grubbs, R.H.5
-
32
-
-
77951858933
-
-
Stenne, B., Timperio, J., Savoie, J., Dudding, T., and Collins, S. K. Org. Lett. 2010, 12, 2032
-
(2010)
Org. Lett.
, vol.12
, pp. 2032
-
-
Stenne, B.1
Timperio, J.2
Savoie, J.3
Dudding, T.4
Collins, S.K.5
-
33
-
-
78049399864
-
-
This strategy would also generate, after each catalytic cycle, a propagating species more stable than a methylidene. For a discussion regarding the advantages of a stable propagating species in solution, see ref 12b
-
This strategy would also generate, after each catalytic cycle, a propagating species more stable than a methylidene. For a discussion regarding the advantages of a stable propagating species in solution, see ref 12b.
-
-
-
-
34
-
-
78049358542
-
-
The main byproduct was unreacted starting material
-
The main byproduct was unreacted starting material.
-
-
-
-
35
-
-
78049412166
-
-
Screening of reaction conditions (solvents, precatalysts etc.) can be found in the Supporting Information
-
Screening of reaction conditions (solvents, precatalysts etc.) can be found in the Supporting Information.
-
-
-
-
36
-
-
78049370295
-
-
Reference 4d reports a 24% yield of 16a starting from the non-phenylated malonate derivative of 16 when employing 5 mol % of an optimized second-generation ruthenium precatalyst
-
Reference 4d reports a 24% yield of 16a starting from the non-phenylated malonate derivative of 16 when employing 5 mol % of an optimized second-generation ruthenium precatalyst.
-
-
-
-
37
-
-
0030443083
-
-
In these cases, the approach of the alkenyl bromide seems to be more difficult resulting in lower activity. For an early example on the Thorpe-Ingold effect in RCM, see
-
In these cases, the approach of the alkenyl bromide seems to be more difficult resulting in lower activity. For an early example on the Thorpe-Ingold effect in RCM, see: Fürstner, A. and Langemann, K. J. Org. Chem. 1996, 61, 8746
-
(1996)
J. Org. Chem.
, vol.61
, pp. 8746
-
-
Fürstner, A.1
Langemann, K.2
-
38
-
-
78049386970
-
-
Probably, a correct and swift approach of the bromoalkene is not possible in this case. For earlier studies that show how olefin isomerization can occur before RCM, see
-
Probably, a correct and swift approach of the bromoalkene is not possible in this case. For earlier studies that show how olefin isomerization can occur before RCM, see
-
-
-
-
39
-
-
0037620216
-
-
Fürstner, A., Thiel, O. R., Ackermann, L., Schanz, H.-J., and Nolan, S. P. J. Org. Chem. 2000, 65, 2204
-
(2000)
J. Org. Chem.
, vol.65
, pp. 2204
-
-
Fürstner, A.1
Thiel, O.R.2
Ackermann, L.3
Schanz, H.-J.4
Nolan, S.P.5
-
40
-
-
3943048796
-
-
references cited therein
-
Schmidt, B. Eur. J. Org. Chem. 2004, 1865 and references cited therein
-
(2004)
Eur. J. Org. Chem.
, pp. 1865
-
-
Schmidt, B.1
-
41
-
-
78049402444
-
-
While compound 6 did not show any apparent reactivity, substrates 20 and 21 partially decomposed with concomitant formation of trace amounts of product (< 10%). A detailed investigation on catalyst and substrate decomposition pathways is underway
-
While compound 6 did not show any apparent reactivity, substrates 20 and 21 partially decomposed with concomitant formation of trace amounts of product (< 10%). A detailed investigation on catalyst and substrate decomposition pathways is underway.
-
-
-
|